

Random Acts of

Mac Development

By

Steve Barnett

Steve Barnett Page 2

Copyright © 2020 Steven Barnett

All rights reserved. No part of this work may be reproduced or transmitted in any forms or means,

electronic or mechanical, including photocopying, recording, or by any information storage or

retrieval system, without the prior written permission of the copyright owner.

Trademarked names, logos, and images may appear in this book. This work uses names, logos,

and images in an editorial fashion to the benefit of the trademark owner with no intention of

infringement of the trademark rather than use a trademark symbol with every occurrence of a

trademarked name, logo, or image. This use of trade names, trademarks, service marks, and

similar terms, even when not identified as such, is not an expression of opinion as to whether or

not they are subject to proprietary rights.

The information in this book is distributed on an "as is" basis, without warranty. Although

precaution has been taken in the preparation of this work, the author shall not have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or

indirectly by the information contained in this work.

Random Acts of Mac Development

Steve Barnett Page 1

Table of Contents

User Interaction ..9

Message Boxes ... 10
NSAlert, the long way ... 10

Changing the Image... 10
With buttons ... 11

NSAlert wrapped up .. 12
Parts of a message ... 12
Defining the icon. ... 12
Defining the buttons .. 13
Defining the text .. 13
Adding Buttons .. 14
Adding The Icon ... 15

File Prompts .. 17
File Open Prompt .. 17
Save file .. 19
Sandboxing ... 20
Selecting Folders.. 22

Toolbars .. 23
Creating Toolbars .. 23
Customising our button ... 24
Adding to the toolbar ... 26
Connecting the icon ... 27
Where next ... 29

Menus ... 30
Overview... 30
Connecting via Storyboard .. 30
Connect Via Code ... 32

Menu Helpers ... 32
Adding A Handler .. 34
Handling A Menu Item .. 35
Connecting the Menu Item .. 35
What’s With The \u{2026} ? .. 35

Refactor for Safety ... 36
Menu Item Tags ... 36
Menu Enum .. 37
Menu Helper ... 38
Usage Refactoring .. 38

Enabling and Disabling Menu Items ... 39
Enabling the Enable/Disable Functionality ... 40

Recently Used Files ... 41
Minimal Initialisation.. 42
Building the Recent Items menu .. 42

Random Acts of Mac Development

Steve Barnett Page 2

The Main Problem.. 43

Dialogs ... 45

Project Structure .. 46

About Box ... 47
About Box ... 47
Creating The Storyboard... 48
Connecting The Menu ... 51
Displaying The Dialog ... 53
Displaying the About Box Modally. .. 54
Cleaning up .. 55
Making the window movable .. 56
Alternate Ending ... 57
Initial Controller .. 59

Preferences Window .. 61
Preferences Windows... 61
Basic Setup ... 61
The Tab View ... 63
Connecting our view .. 65
Trying it out ... 65
Changing the Tab Type ... 67
Adding Tabs ... 69
Getting a Little More Adventurous .. 69
Transitioning between tabs .. 72
Reusing our window .. 73
Making your tabs do something ... 73
Wrapping Up .. 74

Internal Communications ... 75

Master Detail Views ... 76
Master Detail View Communications .. 76
Getting the views to communicate ... 77

Notifications .. 80
Notifications ... 80
Other examples? .. 80
Basic Theory ... 81

Defining Notifications .. 81
Listening for Notifications ... 81
Creating Notifications ... 82

Going Further - Passing simple data ... 82
Going Further - Passing more complex data ... 84

Controls .. 85

NSOutline ... 86
Basic Outlining .. 86

Random Acts of Mac Development

Steve Barnett Page 3

Bits and Pieces .. 87

Tips ... 88
Closing your application .. 88
Dragging a Window ... 89
Window Position .. 89

Files .. 91

XML Parsing .. 92

Parsing an XML file .. 92
Basic File Structure ... 92
Lets create some objects .. 93
NodeHelpers ... 94
Header Class .. 96
Body Wrapper ... 97

Outline Items ... 98
Wrapping It All Up .. 100
Code recap .. 101

Tooling ... 105

Tooling ... 106
Checking code syntax - Swift Lint .. 106

Install .. 106
Integrate into Xcode ... 106
Configuring ... 107
Automated cleanup .. 108

Logging ... 108
Set-up .. 108
Logging ... 109

Random Acts of Mac Development

Steve Barnett Page 4

Figures

Figure 1: Standard message box. ... 10

Figure 2: Message box with new image. ... 11

Figure 3: Message box with new image and buttons.. 11

Figure 4: The components of a message box. .. 12

Figure 5: Message box images. ... 15

Figure 6: File Open selection window. .. 18

Figure 7: File Save selection window. .. 20

Figure 8: File Save Sandboxing Options. ... 21

Figure 9: Window with default toolbar ... 23

Figure 10: Window with default toolbar. ... 24

Figure 11: Window with default toolbar ... 24

Figure 12: Renamed custom view ... 25

Figure 13: Setting the button display type ... 25

Figure 14: Clear the button title text ... 26

Figure 15: Drag the icon onto the toolbar .. 26

Figure 16: Viewing our toolbar ... 27

Figure 17: Setting the icon handler... 28

Figure 18: Selecting the handler method ... 28

Figure 19: The end result .. 29

Figure 20: Default Menu for New Project. .. 30

Figure 21: Connecting Menus. .. 31

Figure 22: Connecting Menus. .. 32

Figure 23 Menus With Ellipsis .. 36
Figure 24 Menus With Tags ... 37
Figure 25 Open Recent Menu .. 41

Figure 26: Folder Structure ... 46

Figure 27: The default about box ... 47

Figure 28:Target About Box .. 48

Figure 29: Create new storyboard ... 49

Figure 30: New Window Controller ... 49

Figure 31: Controller assignments .. 50

Figure 32: Story board ids for the window and view .. 50

Figure 33: Dummy about box content .. 51

Figure 34: Potential first responders ... 53

Figure 35: First about box displayed ... 55

Figure 36: Modal Window Options ... 56

Figure 37: About box without a title ... 56

Figure 38: Alternate window options .. 57

Figure 39: Alternative About Box .. 58

Figure 40: Failing storyboard .. 59

Random Acts of Mac Development

Steve Barnett Page 5

Figure 41: Setting the initial controller ... 59

Figure 42: Setting the window title ... 60

Figure 43: Sample preferences window. ... 61

Figure 44: Preferences dialog folder ... 62

Figure 45: Preferences storyboard. ... 62

Figure 46: Preferences window controller. .. 63

Figure 47: The default tab view ... 64

Figure 48: Special points to note .. 64

Figure 49: Connecting the view to the window .. 65

Figure 50: Connecting the menu item .. 67

Figure 51: Tab styles .. 68

Figure 52: Toolbar buttons .. 68

Figure 53: Adding a tab .. 69

Figure 54: Tabs of different sizes ... 70

Figure 55: Attaching the view controller ... 70

Figure 56: Tab view controller ... 74

Figure 57: Master/Detail example application .. 76

Figure 58: Master/Detail in the designer .. 77

Figure 59: File header information .. 92

Figure 60: Adding the SwiftLint script ... 107

Figure 61: Logging output .. 108

Random Acts of Mac Development

Steven Barnett Page e 7

PREFACE

There are a great many books, videos and courses on the market that will teach you SWIFT

and many more that will teach you iOS development. If you want to write an application for

the Mac, however, the availability of information becomes somewhat rare, as does the quality

of that information.

Dig around and you will find answers to most questions. Those answers will generally be in

Objective-C and will almost always require re-work before you can do anything practical with

them. What I want to achieve here is an accumulation of the bits and pieces of knowledge I

have gained in pursuit of my ambition to write a Mac application using Xcode and Swift.

So, just exactly who am I?

Well, if you’re hoping for someone with decades of Apple development, you’re going to be

disappointed. I’ve been writing code since the early 1980’s so I guess that makes me an

experienced programmer. My background has been in IBM mainframes and then on to PC

development using a variety of languages.

When it comes to developing for the Apple world, I’m a newcomer. I’ve done a bunch of

SWIFT courses and written a couple of iOS apps for my own amusement and education, but I

have not written commercially. That doesn’t make me an Apple expert but neither does it

mean I have no ability to fathom out Apple development. A for loop is a for loop regardless of

the language you use.

Why Read This Book?

So, why would you want to read this book? While I can’t promise it’ll be the best book you’ll

ever read on development or necessarily be the most accurate book on Mac development, I

can offer you my take on how to do practical things on the Mac. I present an eclectic

collection of development topics that cover the things that I needed to do when developing my

applications. The things I present here are real-world and worked for me. That’s always a

good starting place.

What I can’t promise is that I’ll be getting in-depth with the patterns and practices of

development. Honestly, while I accept that there are some great development methodologies

out there, I confess to not always using them.

My plan here is to present software that I have used in my own programs. If it happens to

match a recognised pattern, it’ll be purely coincidence.

Random Acts of Mac Development

Steven Barnett Page e 9

Chapter One

User Interaction

All programs interact with the user at one level or another. Whether it be menus, toolbars,

input windows or messages. On the Mac, there are multiple mechanisms to make that

interaction easier and more flexible. The problem with easy and flexible, as a new developer,

is that it’s sometimes hard to fathom out what class to use and how to work with it. It’s only

easy and flexible once you know how to do it.

This section is a random selection of user interaction mechanisms; the kind of thing Windows

developers have been doing for years. As a Mac newbie, with a Windows background, I know

what I want to do, just not how to do it. We’ll cover a number of the day to day facilities that

every Mac application is likely to need to use.

Random Acts of Mac Development

Steve Barnett Page 10

MESSAGE BOXES

NSAlert, the long way

iOS has a rather nice mechanism for displaying messages, It is, however, fairly complex to

set-up and is async, so is built around closures and all sorts of messy stuff like that. When all

you want to do is display a simple message, you need simpler code.

Luckily, OSX has that simple code for that simple message.

let msg = NSAlert()

msg.messageText = "Title Text"

msg.informativeText = "Informative Hello"

msg.runModal()

Can't get more simple than that and the results don't look too bad either.

Figure 1: Standard message box.

Obviously, you can expand on this, maybe replacing the default icon or add some extra

buttons. But for a quick result, this isn't too bad.

Changing the Image

So, lets change the image. Pretty straight forward, as it turns out.

 let msg = NSAlert()

 msg.messageText = "Title Text"

 msg.informativeText = "Informative Hello"

 msg.icon = NSImage(named: "MacOS")

 msg.runModal()

I have an asset defined called MacOS which is a 48x48 px image. So I plug this into the

NSAlert and the image gets rendered in the message.

Random Acts of Mac Development

Steve Barnett Page 11

Figure 2: Message box with new image.

With buttons

Ok, that's nice, but what if you want to present your users with options. One button isn't

going to be enough, so we expand our code to create a couple of buttons.

let msg = NSAlert()

msg.messageText = "Title Text"

msg.informativeText = "Informative Hello"

msg.icon = NSImage(named: "MacOS")

msg.addButton(withTitle: "Not Ok")

msg.addButton(withTitle: "Ok”)
let result = msg.runModal()

The important changes here are that we have added two buttons and given them some text

to be displayed. By adding these buttons, we also remove the default button.

Figure 3: Message box with new image and buttons.

Of course, having the buttons is of little use if we can't do anything with them. So we also

take the return value of the runModal call and assign it's value to the result variable. For

buttons that we have added by title, the return value will be an integer starting at 1000 for

the first button we added and incrementing by 1 for each subsequent button.

In this case, Not OK will return 1000 and OK will return 1001.

The first button added will become the default button.

Random Acts of Mac Development

Steve Barnett Page 12

NSAlert wrapped up

Using NSAlert to popup messages isn’t a big deal. Well, for the first half dozen messages. After

that it gets to be a bit repetitive and weldon’t like repetitive code, do we (the answer is No, by the

way). So it makes sense to wrap our NSAlert code into a helper class, which is what I present here.

So, where do we start? Lets start by defining the parts that go to make up a message box on

the screen and which parts are optional.

Parts of a message

If we take a message that we displayed in the previous section, we can start to see the

anatomy of a message:

Figure 4: The components of a message box.

So, we have

• An icon on the left.

• Some buttons.

• Some title text.

• An information message.

There is probably a lot more that we can add to our message, but this configuration will

match 99% of the messages we want to display.

Defining the icon.

Lets start with the icon. I know that NSAlert allows you to specify a custom icon and that’s

very nice, but we’re trying to create a generic class here that can satisfy most of our

requirements. If we need to support any old icon, we can add that some other time. Let’s

start by defining the icons we want to support… I make no bones about it, this is a hangover

from my Windows days!

Random Acts of Mac Development

Steve Barnett Page 13

public enum MessageBoxIcon {

 case Stop

 case Information

 case Warning

 case Question

 case None

 case Default

}

The Mac has a default image for a message which we’re supporting with the default case. I

sincerely hope you will never use that default icon. It looks a tad unprofessional.

Defining the buttons

Like the icon, we want to restrict the buttons we want to be able to display. This makes our

class more consistent and forces us to limit our creativity in favour of consistency. So, lets

define the buttons we want to support:

public enum MessageBoxButton: String {

 case OK = "Ok"

 case Cancel = "Cancel"

 case Yes = "Yes"

 case No = "No"

}

Obviously, this is a pretty restrictive list of buttons but, as with the icons, it’s going to

provide 99% of the buttons we need, so lets code for the majority case and not the edge case.

We’re going to want to allow multiple buttons so we have a choice to make; work out every

combination of button (no, that would be crazy) or pass an array of buttons to our message

method so we can add each button separately and so we can control the order that the

buttons are added. Think I’ll go with that solution.

Defining the text

The title text and the message content will be defined in the method we call and is free-

format text, so needs no special consideration.

Which neatly brings us to the method that displays our message box.

public static func show(title: String, message: String,

 icon: MessageBoxIcon = .Default,

 buttons: [MessageBoxButton] = [.OK])

 -> MessageBoxButton {

 let msg = NSAlert()

 msg.messageText = title

 msg.informativeText = message

 add(icon, toMessage: msg)

 add(buttons, toMessage: msg)

 let result = msg.runModal().rawValue - 1000

 return buttons[result]

}

That’s a fairly simple method considering what it does. Let’s go through it top to bottom. The

method signature takes four parameters;

Random Acts of Mac Development

Steve Barnett Page 14

• The “title” of the message.

• The “message” itself.

These are required parameters, which makes sense as you can’t really have defaults for

them. The next two paramagnets are option and have default values;

• The “icon” defines the type of the message box icon to display. This corresponds to the

enumeration we defined for the available image types. It will default to .Default, which

is the default icon from OSx. It’s probably the least useful default value too!

• The “buttons” parameter is an array of buttons you want to appear on the popup

window. We default this to the OK button, which is probably the most useful default.

When we want alternative buttons, we pass in an array of MessageBoxButton values

from which we can construct the buttons.

Our return value is the button that was pressed.

Next we define the NSAlert instance that we are going to customise and inject the static text

we want to be displayed. That’s all the basic set-up necessary to get a message out. However,

we need to deal with icons and buttons too. That’s the purpose of the next two add calls. I’ll

deal with those in a moment.

The final two lines are responsible for displaying the alert and returning the button pressed.

Yes, I know, there is a magic number there, but I’ve yet to find a constant that defines with

it. From experimentation I have found that custom buttons, which is what were adding, have

IDs starting at 1000 and incrementing in value based on the order they are added. That

works nicely for us as it gives us a nice simple index to use to work out which button was

pressed and to return it to the caller.

Adding Buttons

Now, to deal with the lines I glossed over. The first call to add is intended to add the buttons.

The call is simple;

add(buttons, toMessage: msg)

The call is to the class level method called add, passing it the array of buttons that we were

passed and the part filled out NSAlert message to add them to.

private static func add(_ buttons: [MessageBoxButton], toMessage msg: NSAlert) {

 for button in buttons {

 msg.addButton(withTitle: button.rawValue)

 }

}

Nice simple loop. Loop round the array of buttons we were passed in, creating a new button.

The caption for the button is extracted from the enumeration. Simple.

Random Acts of Mac Development

Steve Barnett Page 15

Adding The Icon

Adding the icon is a tad more complex. The call is the same simple call to add that we used

for buttons, but the implementation is more difficult

add(icon, toMessage: msg)

We will have been sent a single icon definition which we need to translate into a picture.

That’s easily achieved in a method with a simple switch.

private static func add(_ icon: MessageBoxIcon, toMessage msg: NSAlert) {

 let imageBundle = Bundle.init(for: MessageBox.self)

 switch icon {

 case .Information:

 msg.icon = imageBundle.image(forResource: "info.png")

 break

 case .Stop:

 msg.icon = imageBundle.image(forResource: "stop.png")

 break

 case .Warning:

 msg.icon = imageBundle.image(forResource: "warning.png")

 break

 case .Question:

 msg.icon = imageBundle.image(forResource: "question.png")

 break

 case .None:

 msg.icon = NSImage()

 break

 default:

 // Do nothing - displays the default icon

 break

 }

}

First thing to note is that we’re using custom images that are embedded into the framework

or project. I’ve created a folder and dragged in 48px x 48px images for my purposes;

Figure 5: Message box images.

You will note there are four images and six icon definitions in the enum. That’s fine, one of

the enum’s is for no image and one for the default, built-in, image, so we only need the four

pictures for the remaining four icons.

First thing we need is a reference to the project bundle. Simplest way to get that is to get the

bundle for the message box class:

Random Acts of Mac Development

Steve Barnett Page 16

let imageBundle = Bundle.init(for: MessageBox.self)

Now I have access to the bundle, I can retrieve the image depending on the icon selected.

It’s probably not the most elegant way to do it, but it’s very simple and effective.

Random Acts of Mac Development

Steve Barnett Page 17

FILE PROMPTS

This isn't a comprehensive analysis of file prompts. The subject is too big and the

permutations of the options too large for a simple overview. The point of this section is to get

you to a start point where you can ask the user for a file URL to open or to save to and to ask

the user for a folder location. If you need more functionality, then you will have a sound

starting point to work from.

File Open Prompt

Prompting the user for the name of a file to open is a relatively painless process. It does,

however, involve creating a control on the fly and setting a lot of options. At the end of the

process, we will either end up with the URL of the file to open or nil if the user cancels.

First thing to realise is that COCOA provides everything we need in the form of the

NSOpenPanel. All we have to do is create it, display it and handle the results when the user

presses a button.

To create the panel, you just need to instantiate the NSOpenPanel and set the options. To do

this, I have a utility method.

private func createOpenPanel(ofType: [String], withTitle: String?) -> NSOpenPanel {

 let openPrompt = NSOpenPanel()

 if let titlePrompt = withTitle {

 openPrompt.message = titlePrompt

 }

 openPrompt.allowsMultipleSelection = false

 openPrompt.canChooseDirectories = false

 openPrompt.canChooseFiles = true

 openPrompt.resolvesAliases = true

 openPrompt.allowedFileTypes = ofType

 return openPrompt

}

In this case, I pass in a string array of the types of files I want to open. This is simply an

array of file extensions. I also pass in a title for the window.

The title is irritating. There is a title property and, if you set it, nothing appears. There seems

to be a split of opinions on whether this is right or not but many people on the interweb have

Random Acts of Mac Development

Steve Barnett Page 18

talked about raising a bug with Apple, but I doubt anything will happen. So, we use the work

around that will work, and set the message property instead.

The resulting window has a title, of sorts, and lets you select a single file of a specific file

type.

Figure 6: File Open selection window.

Now, creating the panel is only half the job. We need a utility method to create and display

it. When I want to prompt for a file, the above method does the heavy lifting of creating the

panel and the caller does the heavy lifting of handing the display and handling of the results.

public static func selectSingleInputFile(ofType fileTypes: [String], withTitle

windowTitle: String?) -> URL? {

 let openPrompt = FileHelpers().createOpenPanel(ofType: fileTypes, withTitle:

windowTitle)

 let result = openPrompt.runModal()

 if result == NSApplication.ModalResponse.OK {

 let fName = openPrompt.urls

 guard fName.count == 1 else { return nil }

 return fName[0].absoluteURL

 }

 return nil

}

So, having called the method to create the panel, we display it by calling the runModal()

method. This will return Ok or Cancel depending on what the user decided to do. It can't

respond with anything else, so that's an easy test.

Assuming the user pressed Ok to select a file, the url’s property will return a list of selected

file URL instances for you to work with. Even though our code to create NSOpenPanel

Random Acts of Mac Development

Steve Barnett Page 19

specifically stated that you could not select multiple files, you will get an array back, so we

need to pick off the first entry in the list.

If they pressed Cancel, then we return nil.

Save file

Prompting the user for a file name to save to is very similar, just different enough to make it

worth while doing a quick run through. This isn't going to actually save the file, just ask the

user for the name of the file to save to. We're going to end up with a URL for a file of nil of

the user cancels.

So, NSOpenPanel provides us with a file open window and NSSavePanel does the equivalent for

saving files. It has way less options, so creating ns NSSavePanel is somewhat easier:

private func createSavePanel(ofType: [String], withTitle: String?) -> NSSavePanel {

 let openPrompt = NSSavePanel()

 if let titlePrompt = withTitle {

 openPrompt.message = titlePrompt

 }

 openPrompt.allowsOtherFileTypes = true

 openPrompt.canCreateDirectories = true

 openPrompt.prompt = "Save As..."

 openPrompt.allowedFileTypes = ofType

 openPrompt.nameFieldLabel = "Enter file name:"

 openPrompt.nameFieldStringValue = "file"

 return openPrompt

}

Ok, when I say way less options, I really meant different options. To be fair, you won't

normally set all of these but I wanted to make sure the options were highlighted.

• allowsOtherFileTypes allows us to save a file with a diffrent file type to the ones we

specified in the allowedFileTypes property. This would normally be left to default to

false.

• prompt sets the text on the save button. It's sometimes useful to be able to change the

caption to something more specific to the application.

• allowedFileTypes is as per the open panel. It lists the types of files you want the user to

be able to create. The first item in this list becomes the default file extension in the

save window.

• nameFieldLabel is the text that appears before the text box where you enter the file

name. I would not normally expect to change this.

• nameFieldStringValue is the default file name that the user is expected to overtype. If

you don’t specify a name, then a default will be generated for you with a date and

time in it.

Random Acts of Mac Development

Steve Barnett Page 20

As with NSOpenPanel, we need something to drive this code and that, as with NSOpenPanel

is simple code:

public static func selectSaveFile(ofType fileTypes: [String], withTitle windowTitle:

String?) -> URL? {

 let openPrompt = FileHelpers().createSavePanel(ofType: fileTypes, withTitle:

windowTitle)

 let result = openPrompt.runModal()

 if result == NSApplication.ModalResponse.OK {

 let fName = openPrompt.url

 return fName

 }

 return nil

}

The main difference here is that we only get one file url returned.

Figure 7: File Save selection window.

There are other things you can do with this panel and other options that you can set.

However, this set of options gets you started and gets you a selection panel you can use with

the minimum of fuss.

Sandboxing

Then life gets complicated and we run our code in XCode and get some totally obscure error

reported in the console:

2019-03-17 10:40:38.713734+0000 MacOutliner[2031:55071] -[NSVBSavePanel init] caught

non-fatal NSInternalInconsistencyException 'bridge absent' with backtrace (

I'll save you the long trace that goes with it. As with so many messages you get during

development, the cause is blindingly obvious from the error message...

Random Acts of Mac Development

Steve Barnett Page 21

Turns out, Google is your best chance of fixing this and you have to turn to sandboxing for

the cause. In its default state, you can't write files, so it makes sense to not allow you to

display a file save popup, so it fails on you. It's good about it, you don't get a horrible message

thrown at you, just a subtle error in the console and an app that doesn't work.

The fix is straight forward, when you know where to go:

Figure 8: File Save Sandboxing Options.

Go to the target, select Capabilities and take a look at the App Sandbox. In there you will find a

set of File Access settings. I change the User Selected File to read/write and the code starts

working. Simple.

Of course, to change these settings you need to be in an app and not a framework project. If

you're in a framework project, the save dialog will appear, but you won't be able to put a file

name in. Be prepared for lost of frustrated beeping when you try to type something!

I also want to say that I have had some weirdness in this area. When changing this setting, I

sometimes get an error with the build. If it talks about problems with the entitlements file

turn the sandbox off and on again and the build problem goes away.

Random Acts of Mac Development

Steve Barnett Page 22

Selecting Folders

Sometimes we don't want a specific file, but want a folder. We may want to process all files in

that folder or to locate a folder to wite several files to. Either way, a file open or file save

prompt is of little use to us.

However, we can re-use the NSOpenPanel code we wrote earlier. Selecting a folder is very

similar to selecting a file, so lets create a folder selection method"

public static func selectFolder() -> URL? {

 let openPrompt = FileHelpers().createOpenPanel(ofType: [""], withTitle: nil)

 openPrompt.canChooseDirectories = true

 openPrompt.canChooseFiles = false

 let result = openPrompt.runModal()

 if result == NSApplication.ModalResponse.OK {

 let fName = openPrompt.urls

 guard fName.count == 1 else { return nil }

 return fName[0].absoluteURL

 }

 return nil

}

We re-use the code to create the open panel. We don't need file extensions in this case as they

are irrelevant. I'm not bothering with a title either.

The trick here is to enable the users ability to check directories with canChooseDirectories and

disable their ability to pick files with canChooseFiles. This turns our file selection window into

a folder selection window.

As with the file open panel, we will be returned an array of folders, so we just have to pick

the first one out of the response.

Random Acts of Mac Development

Steve Barnett Page 23

TOOLBARS

Creating Toolbars

Toolbars, the staple of any application beyond the most trivial. On the Mac, unnecessarily

complicated in my opinion, but doable once you get into a way of working. Lots of bits and

pieces to deal with and some not entirely intuitive things to deal with.

So, where do we start. Well, the toolbar is tethered to the main Window, so we start by

adding a toolbar control to the window. This gives us a toolbar with some pre-defined icons

on it.

Figure 9: Window with default toolbar

If you click on one of the toolbar items, the toolbar editor window will pop-up. This will

display the items that you have defined and that can be placed on the toolbar. The available

items are at the top and the added items are on the representation of the toolbar below.

Random Acts of Mac Development

Steve Barnett Page 24

Figure 10: Window with default toolbar.

First job is usually to delete the items on the default toolbar. All except the space and the

flexible space as these can be useful. Once we have a clean toolbar, we can start adding our

own icons.

Open the object library and search for a Textured Rounded Button and drag it on to the toolbar

in the outline. It's easier to drop onto the outline. What you will end up with is a button

available for the toolbar. It's going to have a rubbish name and title, but we can start

customising that. Most important to understand at this point is that, while the button exists

in the outline, it is NOT on the toolbar!

Figure 11: Window with default toolbar

Customising our button

So we have this `Textured Rounded Button` thing. Where do we start customising it?

Random Acts of Mac Development

Steve Barnett Page 25

I start by clicking on the ‘Custom View’ and renaming it to something that is more

meaningful. In this example, it's been renamed to ‘share’ for no good reason at all. Then, it

needs to be customised to something useful for the toolbar. So, click on the toolbar item and

pop-over to the properties inspector and change the icon it will display and the caption.

Figure 12: Renamed custom view

Depending on the options we select, the icon, the text or a combination of the icon and text

will be displayed. That gets set at the `toolbar` level.

Figure 13: Setting the button display type

Final customisations to remove the title from the textured rounded button itself. If we don't

do this, the title will be shown at runtime and that just looks plain ugly. So click on the

button and delete the title text.

Random Acts of Mac Development

Steve Barnett Page 26

Figure 14: Clear the button title text

Adding to the toolbar

As I said earlier, we have a toolbar item, but it's not on the toolbar. To do that, just drag from

the available items onto the toolbar. Don't expect to be able to drop it in the right place. Ain't

gonna happen! Drop it on the toolbar and then drag it into the place you want it. It'll appear

on the toolbar editor and on the toolbar in the window.

Figure 15: Drag the icon onto the toolbar

Random Acts of Mac Development

Steve Barnett Page 27

We can now run our app and see the results.

Figure 16: Viewing our toolbar

Job done? Not quite, our button doesn't do anything yet. This is where things get a bit

unintuitive.

Connecting the icon

The toolbar lives within the window, but we want to process it in the view we created. All

sorts of logical ways of doing this spring to mind, but it's not that simple. So, where do we

start.

Firstly, we head off to the view where we want to handle the button. We're going to create an

`@IBAction` in there to handle the click of the toolbar icon.

@IBAction func homePressed(_ sender: Any?) {

 print("In the action")

}

To connect the action, we have to tell the button the name of the ruction to call when it's

pressed. That, we do in the structure browser by <control>Clicking and dragging to the `First

Responder` item in the window.

Random Acts of Mac Development

Steve Barnett Page 28

Figure 17: Setting the icon handler

When you do this, Xcode will search for any method that could service the request and will

pop-up a list of all of them. We scroll to the `homePressed` function we defined and select it.

Figure 18: Selecting the handler method

That's it. When the toolbar icon is clicked, the `homePressed` function will be called.

Random Acts of Mac Development

Steve Barnett Page 29

Figure 19: The end result

Where next

There are many potential issues with what we have done so far. The first is that the size of

the icon is a bit variable if we don't display the text. To fix that, set the width and the

maximum width of the button to, say, 47.

Random Acts of Mac Development

Steve Barnett Page 30

MENUS

Overview

When we create our application, Xcode will create a menu bar for us automatically and

populate with a lot of entries. The nice side of this is that Xcode will also handle a number of

these menu items for us so we don’t need to write code. The down-side, is that there are a

number of them that we must handle and the method of connecting them to code is not the

easiest to deal with.

Figure 20: Default Menu for New Project.

There are multiple ways to connect your menu items to code. You can connect via the

storyboard or you can connect in code. It really depends on your particular needs. Both will

be explored below.

Connecting via Storyboard

When your needs are fairly straight forward, connecting via the storyboard makes sense. The

simplest way is to find the menu item in the explorer and <control><click> then drag to the

FirstResponder item.

Random Acts of Mac Development

Steve Barnett Page 31

However, before you connect a menu item, the method that you want to connect it to must

pre-exist in your project. Unlike connecting views to view controllers, Xcode will not create

the method stub for you. So, start the process by creating your menu handler:

@IBAction func openMenuClicked(_ sender: Any) {

 // Code to open a file

}

Once you have the method defined, find the menu item in the explorer, <control><click> then

drag to the FirstResponder item.

Figure 21: Connecting Menus.

When you release the mouse, Xcode will search your project for compatible method

signatures that could satisfy a menu item click:

Random Acts of Mac Development

Steve Barnett Page 32

Figure 22: Connecting Menus.

You will need to search through the list until you find the method you created to handle the

menu item and select it.

And that’s it. When the menu is selected, your nominated method will be called. Where you

put the method is entirely up to you; it does not have to be in the AppDelegate or a

ViewController, just so long as the class exists at run time.

Connect Via Code

Connecting via the storyboard will probably be fine for most circumstances. However, there

are times when it may be more convenient to connect in code. By way of example, our

application has a File menu and the File menu has a number of sub-menus. We can connect

all of these, one by one, to methods in our view controller or, as I describe here, we can create

a file management class that handles all of the File menu options.

Menu Helpers

Given that we are likely to connect Manu menus in our code, a good place to start is with a

helper class for dealing with the repetitive tasks. Key among those is finding the menu item

you want to connect to or that you want to change the state of. So, let’s start with a simple

class called MenuHelpers.

import AppKit

class MenuHelpers {

}

The first method we’re going to need is one to locate the top level menu. The structure of

menu items is that there are top level menus (such as File, Edit etc) and each of these menus

has a submenu containing more menu items. So, if I want the File->Open menu, I have to

locate the File menu first:

Random Acts of Mac Development

Steve Barnett Page 33

static func getTopLevelMenu(withTitle title: String) -> NSMenuItem {

 guard let mainMenu = (NSApplication.shared).mainMenu else {

 fatalError("Failed to get access to the application main menu")

 }

 guard let topLevelMenuItem = mainMenu.item(withTitle: title) else {

 fatalError("Failed to get access to menu item \(title)")

 }

 return topLevelMenuItem

}

So, the menu for the application is attached to the application object. Our first guard

statement gets us a reference to the mainMenu via the application mainMenu property. If we

fail to get the menu, we kill the program, as it implies a critical issue with the code.

Once we have the mainMenu, it will have menu items representing the items at the top level.

We want the File menu, so we search the mainMenu for a menu item with a title of “File”.

Searching by title is only one of the options available to us. The framework also includes an

option to search by the tag associated with the menu, or the item at a specific index.

Probably the safest way to search is via tag as you get to set that in the storyboard and will

not change. While the title of the menu should not change, it’s possible that it will at run

time (perhaps you change the menu for a different language).

However, for our purposes, we’ll stick with the title. If you do go down the tag rabbit hole,

make sure you create an enum to assign meaning to the tag values you give menu items; it

will save you a lot of grief later on.

In our code, we’re going to want to connect to a menu item that is in a sub-menu of the top

level menu so we’re only half way there so far. What we need is a way to get to the sub-menu.

We achieve that with a second helper method:

static func getMenuItem(withTitle title: String,

 inTopLevelMenu topMenu: String) -> NSMenuItem {

 let topLevelMenu = MenuHelpers.getTopLevelMenu(withTitle: topMenu)

 guard let menuItem = topLevelMenu.submenu?.item(withTitle: title) else {

 fatalError("Failed to get access to menu item \(title) in top

 level menu \(topMenu)")

 }

 return menuItem

}

First task is to call the getTopLevelMenu method to retrieve the top level menu item that

contains the menu item we’re looking for. This will either work, or crash out with a fatal

error. We can then retrieve the item we want from the submenu property. Again, for the

purposes of demonstration, we’re using the title of the menu item, but we could search by tag

or take the item at a specific index.

This code also makes the assumption that, because we are doing this all programmatically in

our code, we know that the menu item will exist. There should never be a circumstance

Random Acts of Mac Development

Steve Barnett Page 34

where it does not exist. That may not always be the case, of course, so you may want to beef

up the error handling.

Adding A Handler

Now we have the means to locate a menu item, we want to attach a handler to it so we can

respond when the item is selected.

This code can appear pretty much anywhere in your application. For the purposes of

illustration, let’s assume we’re dealing with the File menu. There are several items on the

File menu and I’ll want to handle them all in one place, so I start out with a FileManagement

class.

My class is going to need to initialize several menu items, so it makes sense to have a helper

method that does the heavy lifting:

private func handleMenu(withTitle title: String, atLevel level: String, withHandler

action: Selector) {

 let identifier = (level + title)

 .replacingOccurrences(of: "\u{2026}", with: "")

 .replacingOccurrences(of: " ", with: "")

 let menuItem = MenuHelpers.getMenuItem(withTitle: title, inTopLevelMenu: level)

 menuItem.target = self

 menuItem.action = action

 menuItem.isEnabled = true

 menuItem.identifier = NSUserInterfaceItemIdentifier(rawValue: identifier)

 }

}

We need to know the title of the menu item we want to handle, the title of the parent menu it

exists within and the method to call when the menu it selected. For the purposes of our code,

I assume that the menu item should be enabled.

Every menu item needs a unique identifier. Since we have the top level menu title and the

item title, we can generate the identifier ourselves. It would be very confusing to the user to

have two menu items with the same title in the same parent menu, so we can assume that

the identifier we come up with is unique. This will hold up even if we use tags for our search

instead of titles.

Next we go fetch the menu item using our menu helper class. As shown previously, this will

either return us the menu item or will crash the program.

We then set four properties:

• target defines the class that will handle the menu. You must override this as menu

items will often be set to FirstResponder and, if you do not override it, your code will

not be called.

• action defines the method to be called when the menu item is clicked on. This is the

selector that is passed to our helper method.

• isEnabled is set to True to enable the menu item.

• identifier sets the menu item unique identifier.

Random Acts of Mac Development

Steve Barnett Page 35

This is the minimum necessary to connect to our menu. The remaining tasks are to code a

method to handle the menu item and a method to make the connection.

Handling A Menu Item

The handler for a menu item is very simple.

@objc func fileNewMenuItem(_ sender: NSMenuItem) {

 // Handle the menu item

}

The method needs to be decorated @objc. Sad fact of life, is that objective-C is still with us

and will be for a long time. The menu handler method is going to be called from Objective-C

code in the operating system, so we need the decoration.

The menu handler will be passed a reference to the menu item that triggered it. This is the

only parameter, do with it what you will.

Then we have the body of the code. That is obviously application specific.

Connecting the Menu Item

Making the connection between the menu item and the handler method is then a simple one

liner:

handleMenu(withTitle: "New", atLevel: "File", withHandler:

#selector(fileNewMenuItem(_:)))

Given that we may have several of these, I recommend creating a configuration method:

private func configureMenus() {

 handleMenu(withTitle: "New", atLevel: "File", withHandler:

#selector(fileNewMenuItem(_:)))

 handleMenu(withTitle: "Open\u{2026}", atLevel: "File", withHandler:

#selector(fileOpenMenuItem(_:)))

 handleMenu(withTitle: "Save\u{2026}", atLevel: "File", withHandler:

#selector(fileSaveMenuItem(_:)))

 handleMenu(withTitle: "Save As\u{2026}", atLevel: "File", withHandler:

#selector(fileSaveAsMenuItem(_:)))

 handleMenu(withTitle: "Close", atLevel: "File", withHandler:

#selector(fileCloseMenuItem(_:)))

}

What’s With The \u{2026} ?

If you take a look at the File menu, you’ll see a number of items with an ellipsis after them:

Random Acts of Mac Development

Steve Barnett Page 36

Figure 23 Menus With Ellipsis

It’s tempting to assume that this is just three dots… Well, that’s just not the case. The menu includes a

specific character for the ellipsis and that is the unicode 2026 character. When we search for a menu

item by title, we have to be careful to search for the ellipsis character and not three dots.

Similarly, when creating the identifier, I refer to remove the ellipsis from the identifier name. Not

strictly necessary, but it makes the identifier easier to handle without a lump of Unicode in the middle.

Refactor for Safety

Having just gone through setting up the menu in code, we hit a couple of issues that we really should

be aware of and that we absolutely must handle.

• Our menu contains that irritating Unicode sequence. Get that wrong and your code is going to

crash.

• First customization is going to work, but what happens when the title of a menu item changes

– your code is going to crash.

• Someone comes along and translates your menu, so your title searches are going to fail and

your code is going to crash.

The list goes on. So, we need a more reliable way to deal with the menu that is not dependant on the

title of the menu. And that is the menu item tag.

Menu Item Tags

When you click on a menu item in StoryBoard, the properties appear on the right:

Random Acts of Mac Development

Steve Barnett Page 37

Figure 24 Menus With Tags

All menu items will have a tag and that tag is just a number. The number will not change as our

application changes, so we deal with the issue of the title text changing or forgetting the Unicode

sequence in one go. Also, if the menu gets translated, the tag remains the same, so it doesn’t matter to

us.

Your only concern is to make sure you give every menu item a tag and the rest takes care of itself. Well,

after a bit of refactoring of our code, that is.

Menu Enum

We’re going to be dealing with hard coded numbers in the StoryBoard and hard coding those numbers

in our code would be a massive mistake. The chances of creating errors are extremely high, so we’re

going to add an enum to the code that we can use to map menu item tags to something we can use in

code safely.

enum MenuTags: Int {

 // **File menu

 case file = 10

 case fileNew = 11

 case fileOpen = 12

 case fileOpenRecent = 13

 case fileClose = 14

 case fileSave = 15

 case fileSaveAs = 16

 case fileRevert = 17

 case filePrintSetup = 18

 case filePrint = 19

 // **Edit menu

 case edit = 50

 // **Format menu

 case format = 100

Our “File” menu will get a tag of 10 and the “New” menu item under File will get a tag of 11. And so on.

The pattern I use is to have the sub-menu items increment from the main menu item and to have the

main menu items separated by a large increment. In this case, “File” is 10 and the next top-level menu

Random Acts of Mac Development

Steve Barnett Page 38

item, “Edit”, is 50 followed by “Format” which is 100. The first item under “File” is “New” so that gets a

tag of 11.

Menu Helper

The menu helper class now needs minor refactoring to use tags instead of titles:

static func getTopLevelMenu(withTag tag: MenuTags) -> NSMenuItem {

 guard let mainMenu = (NSApplication.shared).mainMenu else {

 fatalError("Failed to get access to the application main menu")

 }

 guard let topLevelMenuItem = mainMenu.item(withTag: tag.rawValue) else {

 fatalError("Failed to get access to menu item \(tag)")

 }

 return topLevelMenuItem

}

We’re now passing in a MenuTag that corresponds to the top-level menu we want and the search takes

the MenuTag rawValue, which will be an Int. We then need to refactor the sub-menu search:

static func getMenuItem(withTag tag: MenuTags, inTopLevelMenu topMenu: MenuTags) ->

NSMenuItem {

 let topLevelMenu = MenuHelpers.getTopLevelMenu(withTag: topMenu)

 guard let menuItem = topLevelMenu.submenu?.item(withTag: tag.rawValue) else {

 fatalError("Failed to get access to menu item \(tag) in top level menu

\(topMenu)")

 }

 return menuItem

}

Our error messages are a little less useful in that they will display the value of the enum

now rather than the menu name, but that should be more than enough since the error should

only ever happen in development if the code has been properly tested.

Usage Refactoring

The remaining task is to change the way we use the menu helpers. In the previous example,

we have a file management class that handles the file menus. This includes a helper method

to do the connection. That’s now going to take a couple of MenuTags enums:

private func handle(menu topMenu: MenuTags, item subMenu: MenuTags, withHandler

action: Selector) {

 let identifier = "mnu\(topMenu.rawValue)_\(subMenu.rawValue)"

 let menuItem = MenuHelpers.getMenuItem(withTag: subMenu, inTopLevelMenu: topMenu)

 menuItem.target = self

 menuItem.action = action

 menuItem.isEnabled = true

 menuItem.identifier = NSUserInterfaceItemIdentifier(rawValue: identifier)

}

Random Acts of Mac Development

Steve Barnett Page 39

The main difference here is how we determine the identifier. However, it’s still

fundamentally a combination of the menu and it’s sub-menu. I also refactored the method

signature to make it read a little easier.

That just leaves our calling routine, which now contains considerably fewer hard coded

strings, yet retains its descriptive nature:

private func configureMenus() {

 handle(menu: .file, item: .fileNew, withHandler: #selector(fileNewMenuItem(_:)))

 handle(menu: .file, item: .fileOpen, withHandler: #selector(fileOpenMenuItem(_:)))

 handle(menu: .file, item: .fileSave, withHandler: #selector(fileSaveMenuItem(_:)))

 handle(menu: .file, item: .fileSaveAs, withHandler:

#selector(fileSaveAsMenuItem(_:)))

 handle(menu: .file, item: .fileClose, withHandler:

#selector(fileCloseMenuItem(_:)))

}

Enabling and Disabling Menu Items

There is one very important feature left to deal with and it comes with a massive gotcha if

you don’t know how to deal with it. To say it’s far from intuitive is a major understatement!

All we want to do is enable and disable menu items. It’s always going to be the case that

menu items are not always appropriate, so they need to be disabled. File Save, for example,

is not appropriate when you do not have a file open.

Adding methods to enable and disable menu items to our menu helper is very straight

forward:

static func enableMenuItem(withTag tag: MenuTags, inParentMenu topMenu: MenuTags? =

nil) {

 guard let topMenu = topMenu else {

 // No top level menu specified, so assume this

 // is a top level menu item

 getMenuItem(withTag: tag).isEnabled = true

 return

 }

 getMenuItem(withTag: tag, inTopLevelMenu: topMenu).isEnabled = true

}

This method will enable a menu item by finding the sub-menu item in the parent menu and

setting the isEnabled property to true. If no parent menu item is provided, it disabled all of

the sub-menu items in the menu. Very straight forward.

It’s personal preference whether you add a bool property to this method to set the value for

isEnabled. Perdsonally, I refer to have a separate method for disabling to enabling as it

makes the calling code more explicit about what it is doing. So, I also have a disable method:

Random Acts of Mac Development

Steve Barnett Page 40

static func disableMenuItem(withTag tag: MenuTags, inParentMenu topMenu: MenuTags? =

nil) {

 guard let topMenu = topMenu else {

 // No top level menu specified, so assume this

 // is a top level menu item

 getMenuItem(withTag: tag).isEnabled = false

 return

 }

 getMenuItem(withTag: tag, inTopLevelMenu: topMenu).isEnabled = false

}

It’s a matter of readability and explicit methods just read better to me.

In our setup code, we can then just call the helper to disable the inappropriate menu items

when we start up the program:

 MenuHelpers.disableMenuItem(withTag: .fileSaveAs, inParentMenu: .file)

 MenuHelpers.disableMenuItem(withTag: .fileSave, inParentMenu: .file)

 MenuHelpers.disableMenuItem(withTag: .fileClose, inParentMenu: .file)

Here we disable the File Save, File Save As and File Close menu items.

And therein lies the problem… when the program runs, these menu items remain enabled.

Enabling the Enable/Disable Functionality

By default, menu items will enable and disable themselves by following a hierarchy of rules,

as defined in the Apple documentation, which generally end with the menu item enabled if

certain handlers are not implemented. These rules override any setting we apply to

isEnabled. Very irritating.

I spent several hours trying to diagnose this problem and ended up creating a simple test

case for disabling a single menu item in preparation for a Stack Overflow question. This led

to a solution without having to bother the Stack Overflow community.

In order to allow us to set the isEnabled property, we have to turn off a property of the menu

called autoenablesItems. I started out setting this to false for the main menu; didn’t help, my

menu items remained enabeld. I then progressed to looking at the individual NSMenuItem

menu items; didn’t help, it doesn’t have this property. While digging around, however, I

found that the NSMenuItem has an optional menu property.

Dig around in the Apple documentation and you will see the stunning description:

THE MENU ITEM’S MENU.

Not sure how helpful this ‘help topic’ is, but I took a chance and set the autoenablesItems

property to false, just to see whether it helped.

It did!

Random Acts of Mac Development

Steve Barnett Page 41

So, I incorporated this into the code that defines my menu items and the code to disable

menu items started working:

private func handleMenu(_ subMenu: MenuTags, inParentMenu topMenu: MenuTags,

withHandler action: Selector) {

 let identifier = "mnu\(topMenu.rawValue)_\(subMenu.rawValue)"

 let menuItem = MenuHelpers.getMenuItem(withTag: subMenu, inTopLevelMenu: topMenu)

 menuItem.target = self

 menuItem.action = action

 menuItem.menu?.autoenablesItems = false
 menuItem.isEnabled = true

 menuItem.identifier = NSUserInterfaceItemIdentifier(rawValue: identifier)

}

Recently Used Files

I had no intention of making a section for this however, such a simple function, gave me so

much trouble that I thought it best to make some notes.

I’m assuming that there is a Most Recently Used manager class in the application that can

retrieve a list of recently used files. This is further assumed to be a list of file URL’s. In

StoryBoard, we have a menu item for Open Recent already, which has a number of pre-

defined items under it:

Figure 25 Open Recent Menu

In the designer, you’ll probably have a child NSMenu and that will have a number of pre-

defined items in a submenu. I had a lot of grief dealing with these default items and ended

up deleting the NSMenu item under the Open Recent menu and adding a new, blank,

NSMenu to the structure. That seemed to fix most of the issues I had been having, so I would

suggest that’s a good starting place.

Our Open Recent menu item has a tag associated with it, as shown in the previous enum

section, so we can get easy access to it.

Random Acts of Mac Development

Steve Barnett Page 42

Minimal Initialisation

There is a minimal amount of initialization we need to do to our menu as a one-off task when

the handler class is created.

Technically, we could do this every time we build the recent files sub-menu, but why repeat

the effort. The initialization is called from the initializer of the file handling class and

consists of:

func coinfigureMRUMenu() {

 let recentMenu = MenuHelpers.getMenuItem(withTag: .fileOpenRecent,

 inTopLevelMenu: .file)

 recentMenu.submenu?.removeAllItems()

 recentMenu.menu?.autoenablesItems = false

 recentMenu.target = self

 recentMenu.identifier = NSUserInterfaceItemIdentifier(rawValue: "ReuseMenu")

}

We retrieve the Open Recent menu item, clear its sub-menu of any design time items, turn off

auto-enabling of the menu – we’re going to have the items always enabled – set the target to

our class and set an identifier.

Building the Recent Items menu

Building the menu then becomes a simple task. We’re going to need a selector to handle the

menu item if it is clicked, so we start with that:

@objc func reopenFileMenuItem(_ sender: NSMenuItem) {

 // Handle the menu item. The identifier gives us the

 // identifier of the specific menu item clicked.

}

As with other menu item handlers, this one has to be decorated @objc and will be passed the

menu item that was clicked. We’ll use the identifier of this item to determine what file was

selected for open.

Building the menu is straight forward too:

Random Acts of Mac Development

Steve Barnett Page 43

func buildMRUMenu() {

 let files = mruManager.recentFiles

 let recentMenu = MenuHelpers.getMenuItem(withTag: .fileOpenRecent,

 inTopLevelMenu: .file)

 var itemIndex = 0

 recentMenu.submenu?.removeAllItems()

 for file in files {

 let identifier = "mnuRecent_\(itemIndex)"

 let caption = file.deletingPathExtension().lastPathComponent

 let menuItem = NSMenuItem()

 menuItem.title = caption

 menuItem.target = self

 menuItem.action = #selector(reopenFileMenuItem(_:))

 menuItem.isEnabled = true

 menuItem.identifier = NSUserInterfaceItemIdentifier(rawValue: identifier)

 recentMenu.submenu?.addItem(menuItem)

 itemIndex += 1

 }

}

For our purposes, the call to mruManager.recentFiles is assumed to return an array of the

recently used files. I further assume that it will have limited the number of files to some pre-

configured number, so I don’t need to limit the number if the build code.

Next, we get access to the Open Recent menu and clear its existing sub-menu. We will be

calling this build method many times from many different places, so we need to clear that

sub-menu.

Now, we look through the files that the recent files manager passed us back.

So we can tie the selected menu item back to a file, I create an identifier with a prefix of

“mnuRecent_” and the index of the file in the recent files array. This identifier will be padded

to us as part of the menu handler.

The URL we have is just not suitable for display in a menu. For the menu display, we only

want the name of the file, with the path removed and the file extension removed, so that’s

what we do next.

Then we build the menu item, setting the title to the name of the file, the target to ourselves,

the action to our menu handler method and the identifier we generated to allow us to get the

array index of the actual URL.

This menu item is then added to the sub-menu of the Open Recent menu and we loop round

to the next file.

We’re going to want to call this method when the file handler is first created and every time

the user opens a new file, saves a file or saves a file with a new name.

The Main Problem

Random Acts of Mac Development

Steve Barnett Page 44

I said earlier I had problems. The main one was that, no matter how I went about building

the submenu, it didn’t appear in the program at run time. None of the code failed, but none

of it worked either.

To this day, I have no idea why.

The eventual solution was to delete the menu item and re-add one. All very confusing and

one of those things I tuck away to try on a fresh application next time I’m doing this.

Random Acts of Mac Development

Steven Barnett Page e 45

Chapter Two

Dialogs

Writing for the Mac is really cool. When you create an application, it comes with a load of

code already written for you that just works. Unfortunately, most of it is hidden and some of

it, while useful, is inflexible.

For example, while it’s great that an out-of-the-box application comes with an already hooked

up and functional About popup, it’s very basic and not customisable. So you quickly get to a

place where you want to create your own popup windows.

This section is about a few of those pop-ups, such as an About box and a Preferences window.

Random Acts of Mac Development

Steve Barnett Page 46

PROJECT STRUCTURE
It’s not a requirement, but I like the idea of starting my projects with a little structure. For

dialogs, I like to have a dialogs folder where I can keep the files. For example:

Figure 26: Folder Structure

Reading from the top, we have the application root for the MacWasher application and under

that we have the initial MacWasher folder. Under there I have a placeholder folder called

Dialogs into which I will put all of the popup dialogs for my application. For each dialog, I

create a sub-folder for that specific dialog; AboutBox in this case.

All of the following examples are going to follow this structure for storing the files related to

that particular dialog.

Random Acts of Mac Development

Steve Barnett Page 47

ABOUT BOX

About Box

Xcode templates are pretty cool. You create a new application and all sorts of stuff just

works, right out of the box. One of those things is the about application menu which displays

a default about popup window:

Figure 27: The default about box

Now, for a trivial app, this is fine. It gives you the basic information you want, has an icon

and can be closed with the close button. Pretty much everything you want to do with an

about box. Problem is, it has a few issues too.

The layout is fixed and the content is prescribed. You cannot add extra text and you cannot

move anything around. It’s a fixed size which is fairly small and, I intuitively look for a close

button when a window is displayed and this doesn’t have one.

None of these are disastrous issues, but they become important if you use libraries that

require attribution - you just cannot add any to this window. The solution is, to say the least,

painful to set-up when you’re new to Mac programming, but very logical once you get your

head round the process.

In this section, my aim is to end up with an about window like this:

Random Acts of Mac Development

Steve Barnett Page 48

Figure 28:Target About Box

The key aspects of this window, which is still pretty simple are;

1. I have a larger image which I have moved off to the left.

2. The name of the application is in more prominent text.

3. I have customised copyright text.

4. There is an attribution to the company that created the code code the app is

constructed on top of.

5. I have a close button.

6. The title bar has gone.

7. You can move the window around by clicking and dragging anywhere in the window.

How much of this you might want in your about box is up to you. I tend to see this as a

minimum which I would often extend to have links to web sites and a version number.

So, where do we start.

Creating The Storyboard

First thing I add to my folder is a new storyboard. I realise I have the main storyboard and I

could easily add my new dialog to that, but a storyboard can get very complicated and very

crowded very quickly so I take the stance that the about box is a stand-alone piece of code,

has a single function, is self contained, so can go into a storyboard on it’s own.

So, first job, add a storyboard. File -> New -> File and pick storyboard…

Random Acts of Mac Development

Steve Barnett Page 49

Figure 29: Create new storyboard

When prompted, set the name of the storyboard file to AboutBox so we end up with

AboutBox.Storyboard in the AboutBox folder. The storyboard will be empty, of course, so the

next step is to add a window. So, fire up the library and add a Window Controller.

Figure 30: New Window Controller

We’re going to need to do some work in code for the window and the view, so we might as

well get the file creation over with now. So we need to add two new classes

• AboutBoxWindowController is a COCOA class, derived from NSWindowController. We

need to create one of these and assign it to the window. Important is prompted to

create an XIB file when creating the window controller, uncheck the box. We do not

want an XIB file.

• AboutBoxViewController is. COCOA class, derived from NSViewController and

assigned to the view that we will be dropping our layout onto.

Random Acts of Mac Development

Steve Barnett Page 50

Figure 31: Controller assignments

While we’re in there, we are going to want to refer to the window and the view in code, so we

should give them names. So set the storyboard ID’s for the window and the view.

Figure 32: Story board ids for the window and view

Now, there is a lot of tidying up to be done and a few bits of ode to write yet, but we have a

window and we have a view and it would be nice to see it on the screen. So lets just add a

couple of components to the view so we have something to see, even if it does nothing. Add a

label and add a button.

Random Acts of Mac Development

Steve Barnett Page 51

Figure 33: Dummy about box content

Now it momentarily gets complicated. We have our main storyboard, along with its menu

system and, specifically, an about menu item. We also have a new storyboard with our

dummy about box and neither knows about the other. Our task is to get them talking.

Connecting The Menu

Our first task is to create something to be called when the About menu item is clicked. Since

this can be called at any time regardless of the active window, I’m going to dump the code in

the AppDelegate file:

@NSApplicationMain

class AppDelegate: NSObject, NSApplicationDelegate {

 @IBAction func showAbout(_ sender: Any) {

 print("Show about")

 }

}

Not that impressive yet, but we just want an end point to connect to. We are going to have to

flesh it out before it does anything, but we have to hand-crank the method stub before we can

connect to it from the menu. That signature, by the way, is very important. Get it right.

Now, we skip over to the main storyboard and find the About menu item in the structure.

Random Acts of Mac Development

Steve Barnett Page 52

To make the connection, <Control>Drag from the menu item to the item named First

Responder. Why? Well we’re connecting a menu in the application to a completely separate

window. The application menu knows nothing of the about box window so you can’t connect

directly. Luckily, Xcode knows about the method we just created in the AppDelegate, so it is

capable of making that connection.

When you <Control>Drag to First Responder, you are telling your program the name of the

method you want to call when the menu it clicked and the app is responsible for finding

someone, anyone, in your application that implements that method. When you release the

mouse, all hell breaks lose, a window pops up and populates itself with every method that

might possibly respond to the menu.

Random Acts of Mac Development

Steve Barnett Page 53

Figure 34: Potential first responders

All we have to do is scroll through that list and select the showAbout method we defined in

the AppDelegate.

Ok, so run your application and select the About menu item. You should be rewarded with

this stunning message in the debugging console:

Show about

It may not be spectacular, but it shows we have the right linkage and right is always good.

Displaying The Dialog

Now we get to the detail of getting a window on screen. It’s not particularly complicated, but

several things have to happen at the same time. Lets’s start at the start… finding the

window.

When we defined our storyboard, we assigned storyboard id’s to the window and the view.

We’re going to be using those to locate our window in the app delegate code. In this case, it’s

pretty simple code to locate our window…

@IBAction func showAbout(_ sender: Any) {

let storyboard = NSStoryboard(name: NSStoryboard.Name("AboutBox"), bundle: nil)

if let aboutController = storyboard.instantiateController(withIdentifier:

"AboutBoxWindow") as? AboutBoxWindowController {

 // We have the controller, so display the window

 }

}

Random Acts of Mac Development

Steve Barnett Page 54

So, what’s going on here? The first let statement gets access to the storyboard we created for

our about box:

let storyboard = NSStoryboard(name: NSStoryboard.Name("AboutBox"), bundle: nil)

The name is the file name that we gave the storyboard when we created it. This is our

starting point into the windows and views. Next, we get a reference to the window that we

created. There are two ways of doing this; one where we get the default start window of the

storyboard and one where we get a named window. I prefer to be explicit about what I am

doing, so I get a reference to the window with the storyboard ID I created in interface

builder:

if let aboutController = storyboard.instantiateController(withIdentifier:

"AboutBoxWindow") as? AboutBoxWindowController {

I cast the result to ensure that I have access to the correct window type. If the coast fails,

then nothing will happen. At this point, we have access to the AboutBox window and are in a

position to be able to display it. More on that next.

Displaying the About Box Modally.

We want our about box to appear modally, so nothing else in the app is going to get focus

until the about box is closed. This is going to involve two separate pieces of code, one to

display the window and one to close it. Important you must have both pieces of code in place.

If you put the display code in and not the close code, then your app will hang - there will be

an app modal screen that you cannot close!

Inside the code block in the app delegate, we display our window with:

let app = NSApplication.shared

app.runModal(for: aboutController.window!)

We get a reference to the current application object and run the default window of the

controller modally. The view associated with the window will be loaded and displayed. At

this point, your application will wait for you to close the About Box.

Switch over to the about box you created earlier and create an IBAction for the close button.

This requires two lines of code:

@IBAction func closeAboutBox(_ sender: Any) {

 NSApplication.shared.stopModal()

 self.view.window?.close()

}

The first line tells the application that we no longer want to be displayed modally. This frees

up the application to respond to user input again. The second causes the About Box to close.

Run the code and we get our first about box displayed on the screen.

Random Acts of Mac Development

Steve Barnett Page 55

Figure 35: First about box displayed

When you press the close button, the about box will close. If you try to interact with the main

window while the About box is displayed, you should get a comforting bleep.

Cleaning up

We now have a working about box and could stop here. Putting content onto the form is just

the same as it is for any other form in our application, so its down to styling, placing icons

and positioning text.

We do, however, have some issues we want to fix. If you look at the window, it has a title bar

and icons for close, minimise and maximise. These are unhelpful. We want rid of them…

The minimise and restore buttons are going to destroy the layout of the view. This window is

not designed to expand to full screen, nor is it supposed to be able to be minimised. The close

button is positively dangerous - it will close our window without resetting the modal status of

the app meaning the whole app will hang.

First things first, lets get rid of the title bar and the icons. Head over to the Window

definition in the storyboard and go to the properties inspector. Change them as follows:

Random Acts of Mac Development

Steve Barnett Page 56

Figure 36: Modal Window Options

So, here we have;

• Hidden the title bar.

• Made the title bar transparent.

• Unticked the close, minimise and resize controls.

• Unticked the restorable option.

This gives us our slightly better looking modal window with none of those nasty buttons to

break our design.

Figure 37: About box without a title

Looks better, but we have a new problem. Without a title bar, we cannot move the window. It

appears in the middle of the screen and it stays there until you close it. What if you want to

move it to the side to see something underneath it?

Making the window movable

Open up the code AboutBox Window Controller an update the WindowDidLoad as follows:

Random Acts of Mac Development

Steve Barnett Page 57

override func windowDidLoad() {

 super.windowDidLoad()

 if let window = window {

 window.isMovableByWindowBackground = true

 }

}

This will modify the state of the about box window to make it dragable by clicking and

dragging anywhere on the window. We no longer need the title bar to re-position our window.

The rest, as they say, is your problem. We have an about box and all we need now is to add

content.

Alternate Ending

Ok, so you don't like windows without title bars and you really, desperately, want the close

icon and a title. And I went and took all that away.

Well, there are several ways to display our about box, so we can achieve your needs with

some refactoring.

Lets start with the About Box itself. We need the title bar back and the close icon. That's

fairly straight forward, so go to the window and change the properties as follows:

Figure 38: Alternate window options

This results in a new style of window with a title and a close icon.

Random Acts of Mac Development

Steve Barnett Page 58

Figure 39: Alternative About Box

But we're not finished yet. We have that thorny problem of the close button and the

application modal. We could handle the about box closing and undo the modal, I suppose, but

lets try a different way of displaying the About Box in the first place.

Remember the close button code on the About Box... go change it to this:

@IBAction func closeAboutBox(_ sender: Any) {

 self.dismiss(self)

}

The modal and close code is gone, replaced with a simple dismiss call.

This means we need a new way of displaying our about box, so head over to the App Delegate

and change the showAbout method as follows:

@IBAction func showAbout(_ sender: Any) {

 let storyboard = NSStoryboard(name: NSStoryboard.Name("AboutBox"), bundle: nil)

 if let aboutController = storyboard.instantiateInitialController() as?

NSWindowController {

 if let aboutView = aboutController.contentViewController as?

AboutBoxViewController {

 aboutView.presentAsModalWindow(aboutView)

 }

 }

}

Just for the fun of it and because we only have one window inthe storyboard, I've changed

the code to get the controller to call storyboard.instantiateInitialController. This will find the initial

controller (the only one in this case) regardless of the identifier. Once we have the window

controller, we extract a reference to the view in the controller, which will be the about box

view.

Once we get the view, we can present it as a modal window and OSX will handle the

modality issues.

When we run this, nothing happens. Well, that's a bit of a bust, what's wrong?

Random Acts of Mac Development

Steve Barnett Page 59

Initial Controller

If you open up the About Box storyboard, everything looks fine:

Figure 40: Failing storyboard

But, there is something missing from this picture. Every storyboard needs to identify the

initial window and view and we have not done that. We got away with it before because we

located the window by name. However, we're asking for the initial controller and we havenot

set one.

We need to tell the storyboard which window to open by default.

Figure 41: Setting the initial controller

Random Acts of Mac Development

Steve Barnett Page 60

So, select the window controller (1), tick the is Initial Controller tick box (2) and the initial

controller indicator will appear. This is now the initial window for this storyboard.

While we’re in there, we need to set the title for the window. That’s set again the view:

Figure 42: Setting the window title

This time, when we run the code, the about box will appear.

Just to pose one problem for you; you will see what appears to be a bug. The about box

suddenly gets a maximise button. It's very irritating since we explicitly said we didn't want it

and it does not appear in the designer. So far, I have not found a way to get rid of it.

Random Acts of Mac Development

Steve Barnett Page 61

PREFERENCES WINDOW

Preferences Windows

All but the most trivial applications allow users to customise them in some way. That’s

usually done with a preferences window.

Figure 43: Sample preferences window.

Typically, we have a set of icons across the top of the window that categorise the preferences

and a variable height section below that shows the category specific options. You might

optionally have buttons along the bottom of the window. Options are typically applied as

options are changed, though that does not always make sense. That decision is yours and

yours alone.

Basic Setup

So, how do we get started?

Like the about box, my preference is to have my preferences window defined and maintained

in it’s own storyboard, so the first job is to create ourselves a folder and add a StoryBoard to

it.

Random Acts of Mac Development

Steve Barnett Page 62

Figure 44: Preferences dialog folder

Figure 45: Preferences storyboard.

This will result in an empty storyboard. From the library, we add a Window Controller to put

something on the canvas as a starting point. We also create a window controller class, which

we will almost certainly use later. It’s important to ensure that it’s derived from

NSWindowController and that we don’t create an xib since e are creating a storyboard.

Random Acts of Mac Development

Steve Barnett Page 63

Figure 46: Preferences window controller.

Once we have the class, set to as the class of the window we just created. We’re on our way!

The Tab View

When the window was created, it auto-generated a View Controller and view for you. These

are good to have, normally, but not what we want. Click on the View Controller in the

storyboard navigator and delete it. You’ll end up with just the window.

Next, from the object library, add a Tab View Controller to the storyboard. You’ll get a tab

view and two default tab pages:

Random Acts of Mac Development

Steve Barnett Page 64

Figure 47: The default tab view

There are important things to note about this;

Figure 48: Special points to note

We have some issues we need to address with this new tab view.

1. By default a tab view comes with the tabs. We need to decide whether this is what we

want, and it may work for only two or three options sets, or whether we want to

display a toolbar of icons. For the purposes of this demo, we’re going to change this to

Random Acts of Mac Development

Steve Barnett Page 65

a toolbar. You may decide not to, in which case, you’re done with this part of the

configuration.

2. We got two default tab pages generated for us. Brilliant if we only want two. We’re

going to be adding a third, just so we know what to do.

3. Third issue is more subtle and critical to the working of our app. When we deleted

the view Xcode generated for us, it broke the linkage between the window and the

initial view. Adding the tab view did not restore this for us so our new tab view will

not get displayed if the window is displayed. In fact, nothing will get displayed.

Connecting our view

Lets deal with the easy issue first. Lets connect our tab view to the main window. That turns

out to be very easy.

Click on the Window Controller and control-drag onto the tab view:

Figure 49: Connecting the view to the window

From the menu that appears when you release the mouse, select the window content option.

That will make our tab view the initial view to appear in the window.

Trying it out

So, with no coding we have a preferences window. We can’t do anything with it, but we have

it. Next job is to prove to ourselves that what we have created is going to work and, to do

that, we need to be able to display our dummy preferences window. To do that, were going to

have to create a handler for the menu and connect the supplied menu to it.

Were going to be re-using the preferences window. It’s a simple touch, but it means that, if

the user opens the window a second time, they are positioned on the same tab. As with all of

this, you may decide not to do this - it’s a design decision. To do this, though, we’re going to

need to keep a reference to the window and we’re going to hold it in the AppDelegate for

ease:

Random Acts of Mac Development

Steve Barnett Page 66

@NSApplicationMain

class AppDelegate: NSObject, NSApplicationDelegate {

 var preferencesController: NSWindowController?

Our preferences is a class derived from NSWindowController, so we can define our variable as a

window controller.

Next, we need a handler for the menu. We’re going to keep this to the absolute minimum of

code.

@IBAction func showPreferences(_ sender: Any) {

 if (preferencesController == nil) {

 let storyboard = NSStoryboard(name: NSStoryboard.Name("Preferences"),

bundle: nil)

 preferencesController = storyboard.instantiateInitialController()

as? NSWindowController

 }

 if (preferencesController != nil) {

 preferencesController!.showWindow(sender)

 }

}

So, we’re defining an @IBAction. That’s going to be needed because we’re going to connect

this function to a menu item and to make that connection, we need a pre-existing @IBAction.

First check is to see whether we have already initialised the preferencesController variable

to an existing instance of the preferences window. If not, then e need to get a reference to the

storyboard that we created (Called Preferences) and then we need to initialise the

preferencesController variable to the controller that we connected as the initial controller for

this window.

This leaves us with an initialised reference to the preferences window. We can then show it

using the showWindow call.

The remaining task before we can see our masterpiece is to connect the preferences menu to

our preferences @IBAction function.

So, open up the application scene and navigate down to the Preferences menu item. Once

there, control-drag to the first responder and select our showPreferences method from the

list. If you can’t see it in the list, then they method signature is wrong; make sure it’s an

@IBAction and that it takes one parameter.

Random Acts of Mac Development

Steve Barnett Page 67

Figure 50: Connecting the menu item

At this point, you should be able to build and run the application. Selecting Preferences off

the application menu will display our empty preferences dialog.

Changing the Tab Type

So, we have working code and have successfully created and displayed a preferences dialog.

That still leaves us with the two problems of the tabs being displayed as tabs and not icons

and being limed to two tabs. Lets deal with the tab type next and see if we can replace those

tabs with a toolbar of icons.

Back to the Preferences storyboard and click on the Tab View Controller (not the scene, the

controller). In the attributes inspector, you will see a number of options, one of which is the

style:

Random Acts of Mac Development

Steve Barnett Page 68

Figure 51: Tab styles

Go ahead and change this to Toolbar. Also, don’t be surprised that your tabs will disappear

and be replaced with nothing. That’s expected (and very irritating)!

Click on the first Tab View Item under the Tab View Controller. Over in the attributes

controller, set the Image property to one of the options in the drop down list. While you are

there, change the label text to something specific to the preferences page. At the moment, it

is defaulting to the name of the tab control, so change it to your custom text. Do the same for

the second Tab View Item. You will not see any difference in the Tab View Controller - these

icons will not be displayed at this time.

Run your application and display the preferences. The two tabs you had preciously will be

replaced with a toolbar and two icons:

Figure 52: Toolbar buttons

Clicking on the buttons switches you between the two options set. If you want to verify that

for yourself, add a label to the two View Controller’s so you can see them swapping when you

click the icons.

Random Acts of Mac Development

Steve Barnett Page 69

Adding Tabs

Our two tabs are good and, in many cases, all we will need. What do we do, though, when we

need more options? How do we add more tabs?

Turns out to be very easy…

Figure 53: Adding a tab

Select the Tab View Controller and, in the attributes inspector, click the “+” to add a new

tab. A new tab will be added to the storyboard and connected to our tab controller. You will

need to go and set the label and icon and we’re done; new tab added.

Getting a Little More Adventurous

Just when you thought you were nearly finished…

One of the features of Mac preferences windows is that they dynamically resize when you

change tabs. They optimise themselves to match the content of the tab. This is designed in

the storyboard, where we customise each tab to it’s content:

Random Acts of Mac Development

Steve Barnett Page 70

Figure 54: Tabs of different sizes

The problem we have is that this is not built-in functionality. If you run the app with these

window sizes, you will find the are all re-scaled to the same size. Unhelpful. If we want to

look professional, we need our settings window to dynamically resize when we change tabs.

To do that, we’re going to need view controllers for each of our options tabs. So, start by

creating a PreferencesViewController class with a base of NSViewController. We only need one of

these because we’re going to apply it to every tab. The code is common, so we can get away

with it.

Once you have your class, select each of the tab scenes and set the class in the identity

inspector.

Figure 55: Attaching the view controller

Random Acts of Mac Development

Steve Barnett Page 71

This gets us in a good position to make our variable size dialog because the view controller

will be initialised for each tab. All we need to do is add come code:

class PreferencesViewController: NSViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 // Set the size of the window

 self.preferredContentSize = NSMakeSize(self.view.frame.size.width,

self.view.frame.size.height)

 }

}

The first change is in the viewDidLoad method. This is going to get called when the view is

loaded and gives us an opportunity to set the preferred size for our view. If we set our

preferred size to the size of the view at design time then, every time the view is displayed,

the window will resize to match.

As we move between options sets, the window will resize to fit:

Random Acts of Mac Development

Steve Barnett Page 72

One additional touch here is that the title of the window is always fixed. It would be nicer if

we could get the title of the window to change along with the tab. So, back to the

PreferencesViewController and add a viewDidAppear method:

class PreferencesViewController: NSViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 // Set the size of the window

 self.preferredContentSize = NSMakeSize(self.view.frame.size.width,

self.view.frame.size.height)

 }

 override func viewDidAppear() {

 super.viewDidAppear()

 // Set the window title to match the tab title

 self.parent?.view.window?.title = self.title!

 }

}

Each time a tab is activated, the title of the window will change to match the tab currently

being displayed.

Transitioning between tabs

You now have a pretty nice preferences dialog and it looks pretty good when you are on a

page. There is, however, a problem. As you click on each tab, there is a noticeable pause. The

new tab appears, then it resizes. The result is find, but the transition is ugly.

We need to fix that.

So, back to the Storyboard and select the Tab View Controller in the structure. Over on the

right, in the Attributes Inspector, you will see an option called Crossfade and it will be ticked.

Untick it.

Crossfade is described as

“A transition animation that fades the new view in and simultaneously

fades the old view out. You can combine this animation option with

any of the “slide” options in this enumeration.”

And this is the problem. The old option set fades out, the new one fades in and then the

window resizes. It makes for a jerky transition. With it turned off, the switch is much

smoother.

Random Acts of Mac Development

Steve Barnett Page 73

Reusing our window

Back at the start, when we added code to the appdelegate, I mentioned re-using the window,

which is why we are keeping a reference to it. That’s pretty useless if the window is closed, so

we need to keep the preferences window alive when the user closes it. We can achieve that

with a simple call in the window controller:

class PreferencesWindowController: NSWindowController {

 func windowShouldClose(_ sender: NSWindow) -> Bool {

 self.window?.orderOut(sender)

 return false

 }

}

windowShouldClose will be called when the preferences window is about to close. By returning

false, we stop the window from closing. To ensure that the window doesn’t stay on top of our

application, we make a call to orderOut which sends the preferences window behind the main

window in the window stack and removes it from the screen. The window will remain there,

but not visible.

Making your tabs do something

We have come a long way and have ended up with a pretty good looking preferences window

that we can populate with lots of options. And that is where our next problem come at us like

an express train. We have options, but they can’t do anything. If we try to connect them to

our view controller, it fails - all the tabs are associated with a single view controller and it is

of type NSViewController. The content of the tabs is an VSView. Not compatible.

To add functionality to our tabs, we need to create view controllers for their content views.

So, create a view and base it off NSView:

class OptionSet1ViewController: NSView {

 override func draw(_ dirtyRect: NSRect) {

 super.draw(dirtyRect)

 }

}

Click on the view for the first tab and set it’s class to the class we just created:

Random Acts of Mac Development

Steve Barnett Page 74

Figure 56: Tab view controller

Once we have a class backing our tab, we can add interaction as we would with any other

view, creating @IBOutlet’s and @IBAction’s.

Wrapping Up

All you need to do now is write code to load and save the preferences.

The other thing you will need to deal with is informing the rest of your application that

preferences have been changed. You could, of course, implement the new preferences when

your application restarts, but it would be far better to apply them immediately. To do that,

you need to inform every window indoor application of the change.

Trying to find every active window and class is going to be difficult and very unreliable.

There is a solution, however, that lets your application decide what changes it is interested

in. That’s covered in the section on the Notification Centre.

Random Acts of Mac Development

Steven Barnett Page e 75

Chapter Three

Internal Communications

There are many ways to communicate between your application and the outside world, be it

the internet, the user or the file system. However, there are occasions when you need to

communicate internally, between components of your own application. You might have a

background task running that needs to inform the user when some data becomes available,

or you might change a system setting in your preferences and need to propagate that change

to the rest of your program.

You can do this manually with, for example, the observer pattern or you can be lazy, like me,

and use the built in notifications mechanism. I suggest you go for lazy…

Random Acts of Mac Development

Steve Barnett Page 76

MASTER DETAIL VIEWS

Master Detail View Communications

Master/Detail views are all over Mac applications. In their simplest form, they have a master

panel on the left and a detail panel on the right. For example;

Figure 57: Master/Detail example application

On the left we have an outline control with a list of items in it. When I click on one of the

items, the description text is populated on the right. Looking at this in the designer, we see

that it is, in fact, three separate views:

Random Acts of Mac Development

Steve Barnett Page 77

Figure 58: Master/Detail in the designer

The View Controller is a Vertical Split View Controller. This spawns two separate

controllers, one for the “master” view and one for the “detail’ view. In the image above, the

master is the Task Tree View Controller and the detail is the Task Details View Controller.

The trick we need to pull off is for the master view to tell the detail view when it’s selected

item has changed so we can populate the details.

Getting the views to communicate

For the purposes of this example, the master view has a controller called

TaskTreeViewController and the detail view a controller called TaskDetailsViewController.

The master view is an outline control and the details view contains a text view.

When an item is clicked in the outline view, an event is raised to indicate that the selection

has changed. This is where we need to be in order to start the notification process.

Random Acts of Mac Development

Steve Barnett Page 78

func outlineViewSelectionDidChange(_ notification: Notification) {

 guard let outline = notification.object as? NSOutlineView else {

 return

 }

 let selectedRow = outline.selectedRow

 if let outlineItem = outline.item(atRow: selectedRow)

 as? OutlineItem {

 let associatedNote = outlineItem.notes

 guard let splitVC = parent as? NSSplitViewController

 else { return }

 if let detail = splitVC.children[1]

 as? TaskDetailsViewController {

 detail.notes = associatedNote

 }

 }

}

The first guard is there to ensure that the notification has come from an NSOutlineView. It’s not

a test that we should have to perform, but it’s a case of better safe than sorry. It ensures that

the code, if triggered somewhere else, will only respond to the outline view.

Next, we get the selected row from the outline view and cast it to an OutlineItem instance.

OutlineItem is the class that I used to populate the rows in the outline view. It has a bunch

of properties based on the content of the file I used to build the tree. The specifics of how this

class is constructed is irrelevant for this discussion. Just take it that each row in the tree is

an instance of an OutlineItem.

Having got the OutlineItem, the text to be displayed in the detail view is extracted to the

associatedNode variable.

Now the magic happens,

The next guard statement gets a reference to the parent view of the master view. The parent

is going to be the split view. The split view is going to contain an array of view controllers

and, because we have precisely two child views, we can assume that view [0] is the master

view and view[1] is the detail view.

Just to be sure, we cast view[1] to the TaskDetailsViewController type. Now we have the details

view, we can set a property on that view to set the note text.

Over in the TaskDetailsViewController, there is a computed property for the notes:

public var notes: String {

 set {

 taskNotesUnformatted.string = newValue

 }

 get {

 return taskNotesUnformatted.string

 }

}

Random Acts of Mac Development

Steve Barnett Page 79

In this application, we just assign the text to the taskNotesUnformatted string property.

taskNotesUnformatted is an NSTextView, to the note gets displayed on screen.

Random Acts of Mac Development

Steve Barnett Page 80

NOTIFICATIONS

Notifications

In modern development, connecting objects in order to allow them to communicate is frowned

upon. Rightly so. Creating dependencies between objects in inevitable in any complex

application. However, it should always be our aim to keep that kind of tight coupling to a

minimum.

That said, there are going to be times when you need to inform one or more parts of your

application that something has happened or something has changed or something needs to

happen.

To use a trivial example, lets assume you have a day/light theme switching button. When the

button is pressed, it switches the entire app between bark and light themes. We can tackle

this is many ways including going round every component and changing it’s style. I have no

problem with that approach but what do you do if you have multiple components on the form

that contain nested components. Or, If you have multiple windows open at the same time.

How do you ensure that the theme change of communicated to them all?

That’s where notifications can sort us out.

Other examples?

Well, you might code a preferences window. The user changes their preferences and saves

the changes. At this point, you have two choices, make the user restart the application to get

the new settings or broadcast a notification and let the application components re-customise

themselves. A much better user experience.

Another thing you might want to consider - you have a process that checks the web for an

update. You do this in a separate thread to ensure that the main app is not slowed down by

an occasional check that will probably be quite slow. You might run this as a process that

runs every 30 minutes. However, what do you do if you find an update? You re likely to want

to present the user with the option of downloading the update. Problem is, you’re running a

separate process on a separate thread and have no idea what your main app is doing. The

solution is to broadcast a notification and let the main thread receive the notification and

handle it in the best way.

Random Acts of Mac Development

Steve Barnett Page 81

Basic Theory

The basic theory is that the piece of code that needs to let everyone know about a change (the

notifier) sends a notification out into the system and assumes that anyone interested will

deal with it. Anyone that is interested in that notification (the listener) will listen out for

that type of notification and will know what to do with it if it is informed that it has been

sent.

The notifier has no idea how many people are listening for its notifications and does not care

whether there is anyone listening or not. It sends its notification and forgets about it.

The listener decides what notifications it wants to receive and provides a handler for it. As

notifications arrive, they are handled and discarded.

Defining Notifications

Before we can issue or handle a notification, it needs to be defined. The notifier needs to

know the name it should use when it sends and the listener needs to know what it is

listening for.

We deal with that with a shared struct:

struct ThemeNotifications {

 static let ThemeChangeNotification: String = "themeChangeNotification"

}

There is only one notification in this struct. You are not, however, limited to one. If you need

to raise several types of notification, just add more entries.The part that you need to make

unique in your application is the string associated with the constant. In this case, our

notification is identified as "themeChangeNotification”. In code it will be referred to as

ThemeNotifications.ThemeChangeNotification

Listening for Notifications

Before we get into sending notifications, let’s see what we have to do to listen for and handle

a notification.

We have three things to do here;

1. Set-up the listener to listen for notifications.

2. Create a handler to deal with a notification when it arrives.

3. Add code to the class to remove the listener who the class is discarded.

Setting up the listener is very straight forward:

Random Acts of Mac Development

Steve Barnett Page 82

func initialiseColourTheme() {

 themeObserver = NotificationCenter.default.addObserver(

 forName: Notification.Name(ThemeNotifications.ThemeChangeNotification),

 object: nil, queue: nil, using: { (_) in

 self.applyThemeChange()

 })

}

Yep, it’s a one-liner. The NotificationCenter is a static class that exposes a default property that

gives us access to the default notification system for our application. We add an observer to

this, specifying the name of the notification that we want to listen out for. Ignore the rest of

the parameters for now, as we want to keep this simple. Worth noting, you have to define the

return from the addObserver call at the class level. We are going to need it later for clean-up

purposes. It’s defined as

private var themeObserver: Any?

When a notification comes through of the type we want, the closure will be called. In this

case, we call to a handler called applyThemeChange to handle the event.

In it’s simplest form, that’s just about it.

Now, one last task that I mentioned above. When we add a listener, we really should remove

it when the class goes away. That we do in the deinit method:

deinit {

 if let observerObject = themeObserver {

 NotificationCenter.default.removeObserver(observerObject)

 }

}

This releases the notification handler and ensures that we will not receive any more

notifications.

Creating Notifications

Creating a new notification is just as simple as reading on. Simpler in fact;

let notification = Notification(name:

Notification.Name(ThemeNotifications.ThemeChangeNotification),

 object: nil, userInfo: nil)

NotificationCenter.default.post(notification)

Create a Notification instance, specifying the name of the notification message and post it to

the NotificationCenter. The notification is sent out to annoying listening for it.

Going Further - Passing simple data

Creating and consuming notifications is great in itself. However, how much better would it

be if we could pass useful data too?

Random Acts of Mac Development

Steve Barnett Page 83

No problem…

Lets assume we want to pass the old theme name and the new theme name to anyone

listening in. We can achieve that with a few lines of simple code:

@IBAction func buttonPress(_ sender: NSButton) {

 let oldTheme = "An Old Value"

 let appTheme = "The new theme"

 let userInfo = [

 "oldTheme": oldTheme,

 "newTheme": appTheme

]

 let notification = Notification(name:

Notification.Name(ThemeNotifications.ThemeChangeNotification),

 object: nil, userInfo: userInfo)

 NotificationCenter.default.post(notification)

}

For the purposes of illustration, suspend belief for a few moments and assume there is some

code that gets the old and new theme names and assigns them to the oldTheme and newTheme

variables. I’ve set them to specific strings for this exercise. I build these into a string

dictionary.

When I create the notification message, I pass this dictionary in the userInfo constructor

parameter. Job done!

The other end of the notification is the receiver. This one requires a little more work.

func initialiseColourTheme() {

 themeObserver = NotificationCenter.default.addObserver(

 forName: Notification.Name(ThemeNotifications.ThemeChangeNotification),

 object: nil, queue: nil, using: { (userData) in

 if let userInfo = userData.userInfo as NSDictionary? as! [String:String]?

 {

 let msg = NSAlert()

 msg.messageText = userInfo["oldTheme"] ?? “No old theme”

 msg.informativeText = userInfo["newTheme"] ?? “No new theme“
 msg.runModal()

 }

 })

}

First thing to note here is that I have changed the anonymous parameter to the closure to a

named variable; userData. The userData we receive is of type Notification. It contains:

name = themeChangeNotification,

object = nil,

userInfo = Optional([AnyHashable("oldTheme"): "An Old Value",

 AnyHashable("newTheme"): "The new theme"])

Random Acts of Mac Development

Steve Barnett Page 84

The data we sent through as a string dictionary has been converted to an optional dictionary

of type [AnyHashtable:Any]. Ok, that’s no big deal, but we send a string dictionary, so we

convert it back to a string dictionary:

if let userInfo = userData.userInfo as NSDictionary? as! [String:String]?

Then we can access our data as we would any dictionary.

Going Further - Passing more complex data

Your data more complex? Still not a problem.

Lets define a struct with some more complicated data:

struct sharedObject {

 var Property1 : String

 var Property2 : Int

 var Property3 : Decimal

}

We have three properties of various types collected together into a simple struct. To send this

through, we extend our Notification object:

let mySharedObject = sharedObject(Property1: "My Object",

 Property2: 1,

 Property3: 2.3)

let notification = Notification(name:

Notification.Name(ThemeNotifications.ThemeChangeNotification),

 object: mySharedObject,

 userInfo: userInfo)

NotificationCenter.default.post(notification)

In our receiver object, the Notification we are sent now contains the object we sent too:

name = themeChangeNotification,

object = Optional(TestMacApp.sharedObject(Property1: "My Object",

 Property2: 1,

 Property3: 2.3)),

userInfo = Optional([AnyHashable("newTheme"): "The new theme",

 AnyHashable("oldTheme"): "An Old Value"])

As you would expect, this comes through as an optional, but we can unwrap it easily:

if let userDataObject = userData.object as? sharedObject {

 print(userDataObject)

}

Random Acts of Mac Development

Steven Barnett Page e 85

Chapter Four

Controls

Houehouhowheoiweh owihj owij oi jwoije woiej woij oiej woiej wo. Houehouhowheoiweh owihj

owij oi jwoije woiej woij oiej woiej wo. Houehouhowheoiweh owihj owij oi jwoije woiej woij oiej

woiej wo. Houehouhowheoiweh owihj owij oi jwoije woiej woij oiej woiej wo.

Houehouhowheoiweh owihj owij oi jwoije woiej woij oiej woiej wo. Houehouhowheoiweh owihj

owij oi jwoije woiej woij oiej woiej wo. Houehouhowheoiweh owihj owij oi jwoije woiej woij oiej

woiej wo. Houehouhowheoiweh owihj owij oi jwoije woiej woij oiej woiej wo.

Houehouhowheoiweh owihj owij oi jwoije woiej woij oiej woiej wo. Houehouhowheoiweh owihj

owij oi jwoije woiej woij oiej woiej wo.

Random Acts of Mac Development

Steve Barnett Page 86

NSOUTLINE

NSOutline is very, very useful when trying to present a hierarchy of related data. Equally,

the number of tutorials on how to use it can be counted on the fingers of one hand and they

always seem to limit their hierarchies to a root node with one child node. Not very realistic.

What I present here is an outline view with any number of levels of the same kind of data.

More like the file and folder layout you might see in Finder . I will introduce an XML file

format briefly as this is the file format that I used in my real-world app to populate the

NSOutline control. But I will try not to dwell on it.

Basic Outlining

Random Acts of Mac Development

Steven Barnett Page e 87

Chapter Five

Bits and Pieces

When you’re new to Mac development, there are lots and lots of little things that you learn

you need to do. You learn them by falling over little issues and constantly asking yourself

“why isn’t this the default behaviour?”

In this section, I hope to present a set of small but useful topics that address issues that are quick

and easy to deal with, often with a very small amount of code.

Random Acts of Mac Development

Steve Barnett Page 88

TIPS

Closing your application

When you start an application, a window opens and a menu appears at the top of the screen.

Behind the scenes, the menu has been built at the application level and the initial window is

constructed and displayed for you.

In Windows I don't expect the application to close when the last window is closed. Oddly

enough, I do expect it to on the Mac. Sadly, that takes a bit of coding to achieve. Not much,

but a little.

In Windows, multi-document windows are held in a container, so it's obvious when there are

no child windows open. On the Mac, the child windows are floating in amongst the rest of the

open windows, so it is way less obvious when you close the last window. That tends to lead to

me having loads of apps running but few open windows.

For my own apps, I want the app to terminate when you close the last window. Ok, there are

going to one times when I don't but most times I will. This is especially important if I am not

intending to support multiple concurrent open windows. In this environment, closing the

window closely equates to closing the application, so that’s what I want to happen.

To achieve it, I just need to include one function in the app.delegate. It goes by the subtle

name of:

applicationShouldTerminateAfterLastWindowClosed

Do you think they get paid by the letter?

@NSApplicationMain

class AppDelegate: NSObject, NSApplicationDelegate {

 func applicationShouldTerminateAfterLastWindowClosed(_ sender: NSApplication) ->

Bool {

 return true

 }

}

Simple as that.

Random Acts of Mac Development

Steve Barnett Page 89

Dragging a Window

This tip came up when I was working on the About Box I presented elsewhere. I wanted a

window without a title bar that I could still drag around the screen. It’s not often useful but

you could, for example, create a game where the title bar is a distraction. Ok, a but contrived,

but it’s still useful to know the technique.

Simply add code to the windowDidLoad and you’re done:

override func windowDidLoad() {

 super.windowDidLoad()

 if let window = window {

 window.isMovableByWindowBackground = true

 }

}

Holding the mouse down and dragging will cause the window to drag around the screen.

Window Position

I always find it a little irritating when I close and reopen an application to find that the main

window opens in some default position with a default size and I am forced to manually resize

it. Then, next time I open the application, it’s reverted again.

Given how easy it is to do, all applications should save the window size and position.

To do that, just set the frame autosave name:

class MainWindowController: NSWindowController, NSWindowDelegate {

 override func windowDidLoad() {

 super.windowDidLoad()

 if let window = self.window {

 window.setFrameAutosaveName(

NSWindow.FrameAutosaveName("mainWindowSave"))

 }

 }

}

Just by setting the name in the window controller, the runtime will save the size and

position of your window and will restore it the next time the window is opened. Simple as

that and saves a great deal of irritation.

It’s also worth noting that this isn’t reserved for the main window only. If you have other

windows you open, you can give them a unique name too and have them managed by the Mac

OS. The window position will be saved to the application User Defaults.

Random Acts of Mac Development

Steven Barnett Page e 91

Chapter Six

Files

Lots of what we do involves reading and writing files, parsing the content on read or

formatting the output on write. JSON is a very popular file format that has built in support

in SWIFT/MacOS. However, there are lots of other file formats and we will examine at least

one of these in this section.

Random Acts of Mac Development

Steve Barnett Page 92

XML PARSING

Parsing an XML file

Mess around on the internet and you’re going to come across JSON and XML files at some

stage. Mess around with files from a Windows system and it’s likely it will be XML. I will

assume you have a vague idea of what an XML file looks like.

In this section, I would like to present an Outliner file, as used in a sample application that

loads an XML file into an NSOutline control. The file format I am dealing with is very

simple.

Basic File Structure

Our file is sectioned into two sections, one for options and one for a hierarchy of data

elements.

Figure 59: File header information

Random Acts of Mac Development

Steve Barnett Page 93

There can only be one top most root node. In out file structure, this will be the <opml> node.

The opal file is split into two sections, the first being the <head> section where we put any file

specific options and the second being the <body> section where we save the content of the file.

An example of the head structure is:

 <head>

 <title>Project Title</title>

 <expansionState>0,1,5</expansionState>

 </head>

So the head can have two child nodes, once called <title> and one called <expansionState>. The

title is required and the expansion state is optional.

The body is more complex while being very simple. It contains one type of element called

<outline>. It’s a simple section in that there is only the one element type. It is complicated

because an outline element has multiple attributes and can contain nested outline items. It

is the nesting that gives us our structure:

 1. <body>

 2. <outline text='Credit Interface' _note=‘This is our note'
_status='indeterminate'>

 3. <outline text='Code Transfer' _note=‘#Child item note'>
 4. <outline text='Test 1'>

 5. <outline text='Test 2' />

 6. <outline text='Test 3' />

 7. </outline>

 8. <outline text='Test 1a'>

 9. <outline text='Test 1a child' />

10. <outline text='Test 1a child2' />

11. </outline>

12. </outline>

This is a small fragment of the file structure. All of our outline elements exist under the body

element. The first item (Line 2) is the Credit Interface item. It has a child item below it (Line

3) called Code Transfer and Code Transfer has two child elements called Test 1 and Test 1a.

Test 1 has two child nodes called called Test 2 and Test 3. Test 1a similarly has two child

nodes called Test 1a child and Test 1a child2.

There is a lot more to the file, but is’s all repetition of this simple structure.

An outline element has attributes to define its content;

1. text defines a short name for the item. It is mandatory.

2. _notes defines bulk text. The text to be displayed in our details view.

3. _status defines the status the node.

It’s a very simple element.

Lets create some objects

Random Acts of Mac Development

Steve Barnett Page 94

Now we have a feel for the file format, it makes sense to create some helper objects. As a

minimum, I would expect there to be

• an object to wrap the file itself,

• an object to hold the options in the head,

• an object to map the outline items into.

I’m going to throw a fourth class into the mix that I’m going to call NodeHelpers. A lot of

what we do to the XML file will be repeated many times and it makes sense to group these

together into a helper class.

So many classes, where to start?

NodeHelpers

It’s not very TDD, but I’m going to start with the NodeHelpers class. Based on the file

structure, I know for certain that I’m going to need at least two helper methods, so lets get

them in place first. We’ll start with an empty class:

class NodeHelpers {

}

From the file format, we can clearly see that a lot of our data is encoded as attributes of a

node, so we’ll add a class that extracts the attributes given an XML Element.

public static func loadAttributes(fromElement element: XMLElement) -> [String:String]

{

 var attributeList = [String:String]()

 if let attributes = element.attributes {

 for attribute in attributes {

 if let attributeName = attribute.name,

 let attributeValue = attribute.stringValue {

 attributeList[attributeName] = attributeValue

 }

 }

 }

 return attributeList

}

What we’re going to do in this code is create a dictionary of key/value pairs where the

attribute name is the key and the value is the string value from the XML Element we have

been passed. If there are no attributes, we’ll return an empty dictionary. It’s up for debate

whether the code should throw an error, but an empty dictionary just makes sense in this

circumstance.

The other method I know I am going to need is some way of extracting the text value from an

element. Our header options are all specified as elements with a text component, so we’ll

definitely use it there:

Random Acts of Mac Development

Steve Barnett Page 95

public static func getStringValue(fromNode: XMLElement, forName: String,

 usingDefault: String = "") -> String {

 let node = fromNode.elements(forName: forName)

 if node.count == 0 { return usingDefault }

 return node[0].stringValue ?? usingDefault

}

You’ll note that the functions are static. That’s just a convenience thing since we don’t need

to store state.

One last function I know I’ll need… the file is split into two sections; one for the header and

one for the body. I want a quick and easy way to extract there two sections for further

processing, so I’ll have a method for extracting them.

In my case, I know they’re going to be direct descendants of the root node, so I could go with

a simple process of checking the elements below the root for any with the name we are

looking for. The search would only pull out an element that is a direct descendent, so we

could be happy that we’re not going to get anything below the first level.

public static func getFirstChildNode(fromRoot: XMLElement, forName: String) ->

XMLElement? {

 let elements = fromRoot.elements(forName: forName)

 return elements.count > 0 ? elements[0] : nil

}

That’s ok for this code, but I want something a little more generic. What happens, for

example, if the file structure changes or I need a way to get at an option directly or a new

section is defined. I should not assume that what I have today will necessarily be there

tomorrow and a utility method that is tied to the structure of a file is plain wrong. Utility

methods should not be tied to file implementation details.

So, as an alternative, I have a nice little method that takes an xPath definition and returns

the first matching element.

public static func getFirstNode(fromDocument: XMLDocument, forPath: String) ->

XMLElement? {

 do {

 let elements = try fromDocument.nodes(forXPath: forPath)

 if elements.count == 0 {

 return nil

 }

 return elements[0] as? XMLElement

 } catch {

 return nil

 }

}

It’s only very slightly more complex than the previous version, but it’s a lot more flexible.

Because we have no idea where in the document we are intending to look, I pass in the

loaded XML document.forPath is any xPath statement. For my limited purposes, this will be

a simple path from the root. Yours may be more complicated.

Random Acts of Mac Development

Steve Barnett Page 96

Nodes.forXPath returns a list of XMLNodes rather than XMLElements. It’s more generic,

but we specifically want XMLElements, so I try to cast the result to an XMLElement. If it

can’t be cast, I will get nil back, which is Ok. Similarly, if the xPath is invalid, it will error

and I will return nil again.

The return of nil should be an indictor to the caller of some kind of error. There is nothing

that my utility class can do to fix problems, is it is pointless it trying. The caller can interpret

the null return.

And that concludes the node helper and it’s three helper methods;

• loadAttributes

• getStringValue

• getFirstNode

Header Class

My next class is, oddly enough, going to be another one that we can’t use straight away. It’s

going to hold the data from the header section of the file. These are the options that we load

before everything else and that determine the attributes of the file. In the sample, we have

two options; both optional:

<head>

 <title>Project Title</title>

 <expansionState>0,1,5</expansionState>

</head>

As before, lets start with an empty class.

import Foundation

class OutlineHeader {

}

From what we know, there are going to be two options; the title of the file and the expansion

state of elements. So we’ll create two place holders for these values.

class OutlineHeader {

 public var title: String = ""

 public var expansionState: String = ""

}

At some stage that expansionState needs to be expanded out as we happen to know it’s an

array of integers. That’s for another set of notes! So the remaining task is to get this object

populated.

I’m a great fan of objects populating themselves, so I’m going to create a class initialisation

function that is passed the XML document to extract whatever it needs. This lets the header

be responsible for it’s own state and makes it easier if I need to add more items later or if

things get moved around.

Random Acts of Mac Development

Steve Barnett Page 97

class OutlineHeader {

 public var title: String = ""

 public var expansionState: String = ""

 init(fromDocument doc: XMLDocument) {

 guard let headerNode = NodeHelpers.getFirstNode(fromDocument: doc,

 forPath: "/opml/head") else { return }

 self.title = NodeHelpers.getStringValue(fromNode: headerNode, forName:

"title")

 self.expansionState = NodeHelpers.getStringValue(fromNode: headerNode,

forName: "expansionState")

 }

}

We’re passed in the entire XML document and we use the NodeHelprs class to extract the

head node and then again to extract data in the title and expansionState child elements.

And that’s the entire header class.

Body Wrapper

The body of our document is a hierarchy of OutlineItem elements.

 <body>

 <outline text='Credit Interface' _note=‘This is our note' _status='indeterminate'>

 <outline text='Code Transfer' _note=‘#Child item note'>
 <outline text='Test 1'>

 <outline text='Test 2' />

 <outline text='Test 3' />

 </outline>

 <outline text='Test 1a'>

 <outline text='Test 1a child' />

 <outline text='Test 1a child2' />

 </outline>

 </outline>

Since we created. Class for the header, it seems sensible to have a class for the body too. It

will be the wrapper around our outline structure and will contain the top level node(s). It will

be responsible for finding the body node in the document and loading the first node that will

be the container for all the child nodes.

The entire class consists of:

class OutlineBody {

 var outlineBody: OutlineItem?

 init(fromDocument doc: XMLDocument) {

 guard let bodyNode = NodeHelpers.getFirstNode(fromDocument: doc,

 forPath: "/opml/body") else { return }

 outlineBody = OutlineItem(fromOutlineNode: bodyNode, withParent: nil)

 }

}

Our input is the XML document we loaded previously. From that, we extract the body node.

This is the top most node in the file and it’s immediate children will be OutlineItems. So we

Random Acts of Mac Development

Steve Barnett Page 98

create our first OutlineItem and pass it the body node. This will start the cascade loading of

the outline.

Outline Items

This is the class where the bulk our data is going to be loaded and where the bulk of the

structure loading will take place. It’s an important class!

From the previous discussion, you will recall that an outline item consists of an outline

element and a bunch of attributes:

<outline text='Credit Interface' _note=‘This is our note' _status='indeterminate'>

So, the first thing we’re going to need is a class to encapsulate the element data:

class OutlineItem: CustomStringConvertible {

 var text : String = ""

 var notes: String = ""

 var status: String = ""

 var completed: Bool = false

The completed field isn’t strictly part of the data file, but is derived from the status, so I’m

counting it in the base data.

Next, we need some supporting fields:

 var parent: OutlineItem?

 var children: [OutlineItem] = []

 var attributes: [String: String] = [:]

When we construct the outline item, we keep a reference to our parent element. It’s not

strictly necessary but it’s a useful piece of information to have when we have an outline node

and want to navigate up the hierarchy. It’s an optional because the top most item in our

hierarchy will not have a parent.

Any outline item may have one or more outline items below it in the hierarchy, so we have

an array of child outline items. The relative position of the siblings is given by their position

in the children array.

Finally, the input file is defined by attributes which are key/value pairs, where the value

may be omitted. Since we know what attributes we want to process, we could just extract the

ones we want and save the data. However, if new attributes are added at some later date,

this would lose them. So the approach I’m taking here is to extract all the attributes, use the

ones I need and store the rest for when I write the object out again. I lose nothing that way.

I now need a couple of helper computed properties. I defined my class as implementing

CustomStringConvertible, so I am required to have a description property. I supplement that

with a property to determine whether there are child nodes for this item:

Random Acts of Mac Development

Steve Barnett Page 99

 var hasChildren: Bool { get { return children.count != 0 }}

 var description: String { get { return text } }

Our next task is to get the outline item initialised. That’ll be the constructors function:

init(fromOutlineNode: XMLElement, withParent: OutlineItem?) {

 self.parent = withParent

 populateFromAttributes(fromElement: fromOutlineNode)

 loadChildren(fromElement: fromOutlineNode)

}

Our constructor is passed the parent element from the XML file and the parent OutlineItem

reference so we can save a pointer to our parent in the (you guessed it) parent variable.

At this point we have two tasks to perform;

• Load the current outline items’ data.

• Populate the list of child items.

The method called populateFromAttributes is responsible for loading the attributes and

extracting the data we want quick access to:

private func populateFromAttributes(fromElement: XMLElement) {

 self.attributes = NodeHelpers.loadAttributes(fromElement: fromElement)

 if let text = attributes["text"] {

 self.text = text

 }

 if let notes = attributes["_note"] {

 self.notes = notes

 }

 if let checked = attributes["_status"] {

 self.status = checked

 self.completed = checked == "checked"

 }

}

From an XML point of view, the important call here is the loadAttributes call we make to our

NodeHelpers class. As you will recall this extracts the attributes from the element.attributes

property and converts them to a string dictionary. We will get all attributes whether we want

them or not so we can save them all later.

The following three blocks are just there to extract the three fields that we want.

Once we have populated our own outline item, the next job is to load the child elements, if

there are any. This turns out to be very simple:

Random Acts of Mac Development

Steve Barnett Page 100

private func loadChildren(fromElement parentNode: XMLElement) {

 let childNodes = parentNode.elements(forName: "outline")

 if childNodes.count == 0 { return }

 // Load the child nodes if there are any.

 for node in childNodes {

 let childNode = OutlineItem(fromOutlineNode: node, withParent: self)

 children.append(childNode)

 }

}

First job is to interrogate the current XMLElement and see if it has any child elements. If

there are none, we return without any further work. The array of children will have been

initialised with no child nodes, so we are in a fit state to return.

If we have child elements, then we drop into loop to construct a child OutlineItem class for

each child element. We add these to the array of child elements, establishing the order that

they should appear in to be the order they are in the file. As part of the construction, we pass

a reference to the current element, so each child can set their parent.

Neat and simple and we end up with a hierarchy of OutlineItem objects that matches the

content of the XML file.

Wrapping It All Up

So, we now have classes that

• NodeHelpers - Provides for some re-use when parsing our XML file. There are several

things we need to do when parsing any XML file and concentrating them in the

NodeHelpers class.

• OutlineHeader - Our XML file is in two parts, one of which is a set of options. The

header class parses out those helpers.

• OutlineBody - The second part of our file consists of a hierarchy of items.

Unfortunately, there can be many ‘top level’ items below the body node, so we create

an interim element to encapsulate the body node. This is the root of our hierarchy.

• OutlineItem - defines the hierarchy of items. Each item is responsible for extracting

the attributes it needs from the element in the file and for populating it’s children. As

a helper for using the structure, we added a reference to the owning item in the

parent property.

The only thing we are missing now is a mechanism to load the file and populate the header

and body nodes.

The basis of our class is:

class OpmlFile {

 private var fileUrl: URL

 public var outline: OutlineBody?

 public var header: OutlineHeader?

Random Acts of Mac Development

Steve Barnett Page 101

This will give us variable to store the URL of the file we are loading and two placeholders for

the header and body nodes. Our class can then be initialised using:

init(fromUrl: URL) {

 fileUrl = fromUrl

 guard let doc = loadDocument(url: fromUrl) else {

 // TODO: Log the error.

 return

 }

 self.header = OutlineHeader(fromDocument: doc)

 self.outline = OutlineBody(fromDocument: doc)

}

So, we save the URL of the file and then load the XML. All sorts of things can go wrong with

loading a file, so we wrap it in a method and guard that we get a result. If we don’t get an

XMLDocument, then we drop out uninitialised.

After that, it’s just a case of creating the header and body nodes. We delegated their

initialisation to the nodes themselves, so we don’t need to do anything else here.

The only method we need to cover here is the loadDocument method.

private func loadDocument(url: URL) -> XMLDocument? {

 let options = XMLNode.Options()

 return try? XMLDocument(contentsOf: url, options: options)

}

It doesn’t get much simpler than that. Ok, to be honest, I should have lots of error trapping

around the creation of the XMLDocument and I should have lots of logging and I should be

making sure the user is informed of a load error. But this is a quick run through of parsing

an XML file and all that stuff isn’t.

Code recap

So, to recap the code…

class OutlineHeader {

 public var title: String = ""

 public var expansionState: String = ""

 init(fromDocument doc: XMLDocument) {

 guard let headerNode = NodeHelpers.getFirstNode(fromDocument: doc, forPath:

"/opml/head") else { return }

 self.title = NodeHelpers.getStringValue(fromNode: headerNode, forName:

"title")

 self.expansionState = NodeHelpers.getStringValue(fromNode: headerNode,

forName: "expansionState")

 }

}

The header class to contain the options

Random Acts of Mac Development

Steve Barnett Page 102

class OutlineBody {

 var outlineBody: OutlineItem?

 init(fromDocument doc: XMLDocument) {

 guard let bodyNode = NodeHelpers.getFirstNode(fromDocument: doc,

 forPath: "/opml/body") else { return }

 outlineBody = OutlineItem(fromOutlineNode: bodyNode, withParent: nil)

 }

}

The body class encapsulating the item structure

class OutlineItem: CustomStringConvertible {

 var text : String = ""

 var notes: String = ""

 var status: String = ""

 var completed: Bool = false

 var parent: OutlineItem?

 var children: [OutlineItem] = []

 var attributes: [String: String] = [:]

 var hasChildren: Bool { get { return children.count != 0 }}

 var description: String { get { return text } }

 init(fromOutlineNode: XMLElement, withParent: OutlineItem?) {

 self.parent = withParent

 populateFromAttributes(fromElement: fromOutlineNode)

 loadChildren(fromElement: fromOutlineNode)

 }

 private func loadChildren(fromElement parentNode: XMLElement) {

 let childNodes = parentNode.elements(forName: "outline")

 if childNodes.count == 0 { return }

 // Load the child nodes if there are any.

 for node in childNodes {

 let childNode = OutlineItem(fromOutlineNode: node, withParent: self)

 children.append(childNode)

 }

 }

 private func populateFromAttributes(fromElement: XMLElement) {

 self.attributes = NodeHelpers.loadAttributes(fromElement: fromElement)

 if let text = attributes["text"] {

 self.text = text

 }

 if let notes = attributes["_note"] {

 self.notes = notes

 }

 if let checked = attributes["_status"] {

 self.status = checked

 self.completed = checked == "checked"

 }

 }

}

Random Acts of Mac Development

Steve Barnett Page 103

Our most complex class encapsulating our outline data

class OpmlFile {

 private var fileUrl: URL

 public var outline: OutlineBody?

 public var header: OutlineHeader?

 init(fromUrl: URL) {

 fileUrl = fromUrl

 guard let doc = loadDocument(url: fromUrl) else {

 // TODO: Log the error.

 return

 }

 self.header = OutlineHeader(fromDocument: doc)

 self.outline = OutlineBody(fromDocument: doc)

 }

 private func loadDocument(url: URL) -> XMLDocument? {

 let options = XMLNode.Options()

 return try? XMLDocument(contentsOf: url, options: options)

 }

}

The wrapper round the entire file and out main interface

These classes represent everything we need to load our file. We’ve kept things simple and

tried to make each class responsible for maintaining it’s own data. This has allowed us to

create a simple class for sharing the load of handling the XML functions:

Random Acts of Mac Development

Steve Barnett Page 104

class NodeHelpers {

 public static func loadAttributes(fromElement element: XMLElement) ->

[String:String] {

 var attributeList = [String:String]()

 if let attributes = element.attributes {

 for attribute in attributes {

 if let attributeName = attribute.name,

 let attributeValue = attribute.stringValue {

 attributeList[attributeName] = attributeValue

 }

 }

 }

 return attributeList

 }

 public static func getStringValue(fromNode: XMLElement, forName: String,

 usingDefault: String = "") -> String {

 let node = fromNode.elements(forName: forName)

 if node.count == 0 { return usingDefault }

 return node[0].stringValue ?? usingDefault

 }

 public static func getFirstNode(fromDocument: XMLDocument, forPath: String)

 -> XMLElement? {

 do {

 let elements = try fromDocument.nodes(forXPath: forPath)

 if elements.count == 0 {

 return nil

 }

 return elements[0] as? XMLElement

 } catch {

 print(error)

 return nil

 }

 }

}

Our XML helper class for extracting data

Random Acts of Mac Development

Steven Barnett Page e 105

Chapter Seven

Tooling

I'm a fan of tooling where it adds benefit or just plain makes my life easier. As a result, I use

a small amount of tooling but it's always worthwhile.

This section is about providing some pointers to that tooling and how to use it.

Random Acts of Mac Development

Steve Barnett Page 106

TOOLING

Checking code syntax - Swift Lint

I'm not a great fan of lint programs. Most of the ones I have had experience of have been

painful to use. They tend to over-analyse your code, to pick out every trivial style issue

whether it has a significant impact on the code or not. Technically, that is what they are for.

Just most of them seem to go so over the top that you end up missing the issues in a sea of

trivia.

Swift has its own lint program. And I thought I should give it a go. Glad I did.

Install

There is a GitHub repo with the details, so that's a good place to start. You'll find that at

Swiftlint on GitHub. Installing is a one-off task and consists of running:

brew install swiftlint

That gets it on to your machine. Now, you can run it as a command line and that's what I've

seen the most. It's fine to do that, but it gives you a get out of jail free card by letting you

ignore it or ignore the issues it raises. A better approach is to get it to run every time you

build your project. Its a great incentive to fix the issues rather than pretend they're not

there.

Integrate into Xcode

Integrating it into your project is as simple as adding a new script action:

https://github.com/realm/SwiftLint

Random Acts of Mac Development

Steve Barnett Page 107

Figure 60: Adding the SwiftLint script

1. Select the target.

2. Select the Build Phases tab.

3. Click the + and add a run script phase.

4. Add the script.

The code of the script is

if which swiftlint >/dev/null; then

 swiftlint

else

 echo "Warning: SwiftLint is not installed"

fi

Now, every time you build, it will run Swiftlint against that project. If you have multiple

projects within the workspace, then you'll need to add the script to each of the ones you want

checked. This is pretty useful when you have a load of dependencies introduced with the

likes of Cocoapods, where third party code is added to your workspace.

Configuring

Ok, so not every test is a problem and not every setting will meet your requirements.

Swiftlint is configurable to allow you to disable some tests, introduce some disabled ones or

adjust the parameters of enabled tests. Config is stored in a file called .swiftlint.yml in the

same folder as your project. Watch out! That file name starts with a full-stop.

I prefer not to change too many of the rules, so my default yml only has two overrides:

line_length: 160

vertical_parameter_alignment: disabled

Random Acts of Mac Development

Steve Barnett Page 108

The default for line length is stupidly short, so I give myself some leeway. The rule for vertical

parameter alignment is just an irritation to me. I like to line up continuation lines my own

way, so I have to turn this off.

Automated cleanup

There are some rules that feel trivial and that you propagate without thinking of them too

much. Luckily, some of them are fixable with Swiftlint itself.

To do that, open the terminal at the folder where the project is in stalled and type

swiftlint autocorrect

It'll go through and fix a load of simple issues for you automatically. A very useful thing to do

when you first set-up swiftlint in the project.

Logging

I come from a world where there are a large number of tools to help you with debugging your

programs. When I got to Xcode and Swift, I was presented with LLDB (for which I still know

very few commands) and using print statements. Not ideal.

To be fair, nothing much has changed from those early debugging days, except I now have a

much snazzier form of printing to the console in the form of SwiftyBeaver.

Figure 61: Logging output

You can get install instructions over at github for SwiftyBeaver. For my part., I prefer using

Carthage for my install, but you can pick some other way if you want.

Set-up

There are two phases to using SwiftyBeaver; the set-up of the environment and the logging

to the console. To get the set-up done, you need to go over to the AppDelegate.swift file. For

the purposes of our logging, we're going to log to the console. You can log to all sorts of pother

locations, but the console is the simplest place for debugging purposes.

So, first thing we need to do is reference the library and create a global logging variable:

https://github.com/SwiftyBeaver/SwiftyBeaver

Random Acts of Mac Development

Steve Barnett Page 109

import SwiftyBeaver

let log = SwiftyBeaver.self

The log variable is a convenience, but a very convenient one, so it's worth the ridicule of

having a global variable!

The next bit of set-up, I usually split into a separate method:

fileprivate func initialiseConsoleLogging() {

 let console = ConsoleDestination() // log to Xcode Console

 // Set a custom format to get date/time and add some colour

 // indicators to the log to make spotting message level easier.

 console.format = "$DHH:mm:ss$d $L $M"

 console.levelString.verbose = "💜 VERBOSE"

 console.levelString.debug = "💚 DEBUG"

 console.levelString.info = "💙 INFO"

 console.levelString.warning = "💛 WARNING"

 console.levelString.error = "❤️ ERROR"

 // Setting the level here determines how much output we get

 console.minLevel = .verbose

 // add the destinations to SwiftyBeaver

 log.addDestination(console)

 log.info("App started and log initialised.")

}

What we are doing here is defining the console as a destination and configuring the output.

The format determines how the output will look while the levelString is used to add some

colour to the console which makes it easier to spot messages.

The minlevel tells SwiftyBeaver what level to report at. While intensively debugging, this is

usually set to .verbose as this gives me the maximum number of messages. Once the app

settles down, it drops to .debug.

For production, you might as well set it to .error, since you cannot get the console output

anyway. For production, you might want to look at the paid options!

Logging

Logging is the second part of the process. That is simply a case of lobbing calls to the log

object throughout your code.

let item = items.filter() {

 $0.ItemName.uppercased() == noun && $0.Location == location

}

log.debug("Auto get for \(noun) returned \(item.count) results.")

log provides methods for outputting a string at various levels. Here I have used the debug

level which will show provided the minLevel is .debug or higher (.verbose). For the harder to

debug issues, I might use verbose level debugging:

Random Acts of Mac Development

Steve Barnett Page 110

if tmp != 0 {

 vIndex = VERB_GO

 nIndex = tmp

 log.verbose("Go verb found. Direction is \(verb) which translates to \(tmp)")

}

The level at which you log is entirely up to you. I tend to find I can stabilise my programs at

the debug and verbose levels during development. For production running, it might make

more sense to log to a file at a higher level.

	Message Boxes
	NSAlert, the long way
	Changing the Image
	With buttons

	NSAlert wrapped up
	Parts of a message
	Defining the icon.
	Defining the buttons
	Defining the text
	Adding Buttons
	Adding The Icon

	File Prompts
	File Open Prompt
	Save file
	Sandboxing
	Selecting Folders

	Toolbars
	Creating Toolbars
	Customising our button
	Adding to the toolbar
	Connecting the icon
	Where next

	Menus
	Overview
	Connecting via Storyboard
	Connect Via Code
	Menu Helpers
	Adding A Handler
	Handling A Menu Item
	Connecting the Menu Item
	What’s With The \u{2026} ?

	Refactor for Safety
	Menu Item Tags
	Menu Enum
	Menu Helper
	Usage Refactoring

	Enabling and Disabling Menu Items
	Enabling the Enable/Disable Functionality

	Recently Used Files
	Minimal Initialisation
	Building the Recent Items menu
	The Main Problem

	Project Structure
	About Box
	About Box
	Creating The Storyboard
	Connecting The Menu
	Displaying The Dialog
	Displaying the About Box Modally.
	Cleaning up
	Making the window movable
	Alternate Ending
	Initial Controller

	Preferences Window
	Preferences Windows
	Basic Setup
	The Tab View
	Connecting our view
	Trying it out
	Changing the Tab Type
	Adding Tabs
	Getting a Little More Adventurous
	Transitioning between tabs
	Reusing our window
	Making your tabs do something
	Wrapping Up

	Master Detail Views
	Master Detail View Communications
	Getting the views to communicate

	Notifications
	Notifications
	Other examples?
	Basic Theory
	Defining Notifications
	Listening for Notifications
	Creating Notifications

	Going Further - Passing simple data
	Going Further - Passing more complex data

	NSOutline
	Basic Outlining

	Tips
	Closing your application
	Dragging a Window
	Window Position

	XML Parsing
	Parsing an XML file
	Basic File Structure
	Lets create some objects
	NodeHelpers
	Header Class
	Body Wrapper
	Outline Items
	Wrapping It All Up
	Code recap

	Tooling
	Checking code syntax - Swift Lint
	Install
	Integrate into Xcode
	Configuring
	Automated cleanup

	Logging
	Set-up
	Logging

